Shanhu Bao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142780/publications.pdf

Version: 2024-02-01

394421 395702 1,097 34 19 33 citations h-index g-index papers 34 34 34 923 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Synergistic Effect of Al ³⁺ +Li ⁺ -Based All-Solid-State Electrochromic Devices with Robust Performance. ACS Applied Electronic Materials, 2020, 2, 2171-2179.	4.3	19
2	Effects of hydrogen concentration and catalytic layer on the hydrogenation/dehydrogenation of Mg based alloy thin films. Materials Research Express, 2019, 6, 105020.	1.6	0
3	High Performance and Excellent Stability of All-Solid-State Electrochromic Devices Based on a Li _{1.85} AlO _{<i>z</i>/sub> Ion Conducting Layer. ACS Sustainable Chemistry and Engineering, 2019, 7, 17390-17396.}	6.7	41
4	Photo-thermochromic properties of oxygen-containing yttrium hydride and tungsten oxide composite films. Solar Energy Materials and Solar Cells, 2019, 200, 109930.	6.2	20
5	High performance all-solid-state electrochromic device based on LixNiOy layer with gradient Li distribution. Electrochimica Acta, 2019, 317, 10-16.	5.2	28
6	Facile synthesis of hydrated magnesium vanadium bronze if -Mg0.25V2O5 \hat{A} -H2O as a novel cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 777, 931-938.	5.5	7
7	Application-oriented VO2 thermochromic coatings with composite structures: Optimized optical performance and robust fatigue properties. Solar Energy Materials and Solar Cells, 2019, 189, 138-148.	6.2	57
8	Excellent photochromic properties of an oxygen-containing yttrium hydride coated with tungsten oxide (YHx:O/WO3). Scripta Materialia, 2018, 142, 36-40.	5.2	12
9	Wideâ€Band Reflectionâ€Type, Allâ€Solidâ€State Switchable Mirror Composed of WO 3 –Mg 4 Ni Thin Films an Protonâ€Conductive Polymer Electrolytes. ChemistrySelect, 2018, 3, 7507-7512.	d _{.5}	1
10	Improved performance of Mg–Y alloy thin film switchable mirrors after coating with a superhydrophobic surface. Applied Surface Science, 2017, 403, 23-28.	6.1	16
11	Selective and Tunable Nearâ€Infrared and Visible Light Transmittance of MoO _{3â^'<i>x</i>} Nanocomposites with Different Crystallinity. Chemistry - an Asian Journal, 2017, 12, 1709-1714.	3.3	22
12	Low-temperature deposition of VO2 films with high crystalline degree by embedding multilayered structure. Solar Energy Materials and Solar Cells, 2017, 161, 70-76.	6.2	53
13	Long Straczekite δâ€Ca _{0.24} V ₂ O ₅ â <h<sub>2O Nanorods and Derived βâ€Ca_{0.24}V₂O₅ Nanorods as Novel Host Materials for Lithium Storage with Excellent Cycling Stability. Chemistry - A European Journal, 2017, 23, 13221-13232.</h<sub>	3.3	23
14	Thermochromic multilayer films of WO ₃ /VO ₂ /WO ₃ sandwich structure with enhanced luminous transmittance and durability. RSC Advances, 2016, 6, 106435-106442.	3.6	93
15	Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin film by vacuum thermal-evaporation. Frontiers of Materials Science, 2016, 10, 320-327.	2.2	11
16	TiO2(R)/VO2(M)/TiO2(A) multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions. Nano Energy, 2015, 11, 136-145.	16.0	235
17	Switchable mirror based on Mg–Zr–H thin films. Journal of Alloys and Compounds, 2012, 513, 495-498.	5.5	14
18	Optical switching properties of all-solid-state switchable mirror glass based on magnesium–nickel thin film for environmental temperature. Solar Energy Materials and Solar Cells, 2010, 94, 227-231.	6.2	15

#	Article	IF	CITATIONS
19	Analysis of Degradation of Flexible All-Solid-State Switchable Mirror Based on Mg–Ni Thin Film. Japanese Journal of Applied Physics, 2009, 48, 102402.	1.5	10
20	Preparation and characterization of gasochromic switchable-mirror window with practical size. Solar Energy Materials and Solar Cells, 2009, 93, 2138-2142.	6.2	40
21	Optical property and cycling durability of polytetrafluoroethylene top-covered and metal buffer layer inserted Mg–Ni switchable mirror. Solar Energy Materials and Solar Cells, 2009, 93, 1642-1646.	6.2	19
22	Effect of deposition conditions on the response and durability of an Mg4Ni film switchable mirror. Vacuum, 2008, 83, 486-489.	3.5	6
23	Improved Durability of All-Solid-State Switchable Mirror Based on Magnesium–Nickel Thin Film Using Aluminum Buffer Layer. Journal of the Electrochemical Society, 2008, 155, J278.	2.9	3
24	Flexible all-solid-state switchable mirror on plastic sheet. Applied Physics Letters, 2008, 92, 041912.	3.3	44
25	Near colorless all-solid-state switchable mirror based on magnesium-titanium thin film. Journal of Applied Physics, 2008, 103, .	2.5	32
26	Polytetrafluoroethylene (PTFE) Top-Covered Mg-Ni Switchable Mirror Thin Films. Materials Transactions, 2008, 49, 1919-1921.	1.2	13
27	Optical properties and degradation mechanism of magnesium-niobium thin film switchable mirrors. Journal of the Ceramic Society of Japan, 2008, 116, 771-775.	1.1	9
28	Electrochromic Properties of Pd-capped Mg-Ni Switchable Mirror Thin Films. Electrochemistry, 2008, 76, 282-287.	1.4	2
29	Degradation of Switchable Mirror Based on Mg–Ni Alloy Thin Film. Japanese Journal of Applied Physics, 2007, 46, 4260-4264.	1.5	32
30	Aluminum buffer layer for high durability of all-solid-state switchable mirror based on magnesium-nickel thin film. Applied Physics Letters, 2007, 91, .	3.3	43
31	Toward Solid-State Switchable Mirror Devices Using Magnesium-Rich Magnesium–Nickel Alloy Thin Films. Japanese Journal of Applied Physics, 2007, 46, 5168-5171.	1.5	47
32	Durability of All-Solid-State Switchable Mirror Based on Magnesium–Nickel Thin Film. Electrochemical and Solid-State Letters, 2007, 10, J52.	2.2	30
33	Optical switching property of Pd-capped Mg–Ni alloy thin films prepared by magnetron sputtering. Vacuum, 2006, 80, 684-687.	3.5	67
34	Titanium-Buffer-Layer-Inserted Switchable Mirror Based on Mg-Ni Alloy Thin Film. Japanese Journal of Applied Physics, 2006, 45, L588-L590.	1.5	33