Vikas K Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Markerâ€assisted forward breeding to develop a droughtâ€, bacterialâ€leafâ€blightâ€, and blastâ€resistant rice cultivar. Plant Genome, 2022, 15, e20170.	2.8	10
2	Development and validation of a novel core set of KASP markers for the traits improving grain yield and adaptability of rice under direct-seeded cultivation conditions. Genomics, 2022, 114, 110269.	2.9	9
3	Multiparent-Derived, Marker-Assisted Introgression Lines of the Elite Indian Rice Cultivar, â€ [~] Krishna Hamsa' Show Resistance against Bacterial Blight and Blast and Tolerance to Drought. Plants, 2022, 11, 622.	3.5	5
4	Genomic Designing for Biotic Stress Resistant Rice. , 2021, , 1-58.		0
5	Genomic resources in plant breeding for sustainable agriculture. Journal of Plant Physiology, 2021, 257, 153351.	3.5	90
6	Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. Theoretical and Applied Genetics, 2021, 134, 1829-1843.	3.6	32
7	Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Scientific Reports, 2021, 11, 10082.	3.3	15
8	WheatQTLdb: a QTL database for wheat. Molecular Genetics and Genomics, 2021, 296, 1051-1056.	2.1	47
9	Effective Crop Management and Modern Breeding Strategies to Ensure Higher Crop Productivity under Direct Seeded Rice Cultivation System: A Review. Agronomy, 2021, 11, 1264.	3.0	12
10	Characterization of heterosis and genomic predictionâ€based establishment of heterotic patterns for developing better hybrids in pigeonpea. Plant Genome, 2021, 14, e20125.	2.8	6
11	Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS ONE, 2021, 16, e0256721.	2.5	19
12	Genomicsâ€assisted breeding for successful development of multipleâ€stressâ€tolerant, climateâ€smart rice for southern and southeastern Asia. Plant Genome, 2021, 14, e20074.	2.8	14
13	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106
14	Genomeâ€wide analysis of epigenetic and transcriptional changes associated with heterosis in pigeonpea. Plant Biotechnology Journal, 2020, 18, 1697-1710.	8.3	38
15	Identification of heterotic groups in South-Asian-bred hybrid parents of pearl millet. Theoretical and Applied Genetics, 2020, 133, 873-888.	3.6	15
16	Seeking Crops with Balanced Parts for the Ideal Whole. Trends in Plant Science, 2020, 25, 1189-1193.	8.8	18
17	Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Functional and Integrative Genomics, 2020, 20, 739-761.	3.5	37
18	More and more of less and less: Is genomicsâ€based breeding of dry directâ€seeded rice (DDSR) varieties the need of hour?. Plant Biotechnology Journal, 2020, 18, 2173-2186.	8.3	20

#	Article	IF	CITATIONS
19	Development of introgression lines in high yielding, semi-dwarf genetic backgroundsÂto enable improvement of modern rice varieties for tolerance to multiple abiotic stresses free from undesirable linkage drag. Scientific Reports, 2020, 10, 13073.	3.3	16

20 Superior haplotypes for haplotypeâ€based breeding for drought tolerance in pigeonpea (<i>Cajanus) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

21	Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Scientific Reports, 2020, 10, 214.	3.3	17
22	5Gs for crop genetic improvement. Current Opinion in Plant Biology, 2020, 56, 190-196.	7.1	134
23	Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice, 2020, 13, 29.	4.0	48
24	Unraveling candidate genomic regions responsible for delayed leaf senescence in rice. PLoS ONE, 2020, 15, e0240591.	2.5	4
25	Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Scientific Reports, 2019, 9, 9334.	3.3	37
26	Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Scientific Reports, 2019, 9, 14326.	3.3	46
27	Haplotype analysis of key genes governing grain yield and quality traits across 3K <scp>RG</scp> panel reveals scope for the development of tailorâ€made rice with enhanced genetic gains. Plant Biotechnology Journal, 2019, 17, 1612-1622.	8.3	87
28	Identification of genomic region(s) responsible for high iron and zinc content in rice. Scientific Reports, 2019, 9, 8136.	3.3	52
29	Genome-wide association study reveals significant genomic regions for improving yield, adaptability of rice under dry direct seeded cultivation condition. BMC Genomics, 2019, 20, 471.	2.8	26
30	Epistatic interactions of major effect drought QTLs with genetic background loci determine grain yield of rice under drought stress. Scientific Reports, 2019, 9, 2616.	3.3	36
31	Development of sequence-based markers for seed protein content in pigeonpea. Molecular Genetics and Genomics, 2019, 294, 57-68.	2.1	27
32	Toward the sequence-based breeding in legumes in the post-genome sequencing era. Theoretical and Applied Genetics, 2019, 132, 797-816.	3.6	147
33	Can genomics deliver climate-change ready crops?. Current Opinion in Plant Biology, 2018, 45, 205-211.	7.1	105
34	Current Status and Future Prospects of Next-Generation Data Management and Analytical Decision Support Tools for Enhancing Genetic Gains in Crops. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 277-292.	1.1	4
35	Development and Application of Highâ€Density Axiom <i>Cajanus</i> SNP Array with 56K SNPs to Understand the Genome Architecture of Released Cultivars and Founder Genotypes. Plant Genome, 2018, 11, 180005.	2.8	35
36	Genetic variation and relationships of total seed protein content with some agronomic traits in pigeonpea (Cajanus cajan (L.) Millsp.). Australian Journal of Crop Science, 2018, 12, 1859-1865.	0.3	19

Vikas K Singh

#	Article	IF	CITATIONS
37	Marker-Assisted Improvement of the Elite Maintainer Line of Rice, IR 58025B for Wide Compatibility (S5n) Gene. Frontiers in Plant Science, 2018, 9, 1051.	3.6	10
38	Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Scientific Reports, 2017, 7, 1911.	3.3	55
39	Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Scientific Reports, 2017, 7, 1813.	3.3	48
40	Indelâ€seq: a fastâ€forward genetics approach for identification of traitâ€associated putative candidate genomic regions and its application in pigeonpea (<i>Cajanus cajan</i>). Plant Biotechnology Journal, 2017, 15, 906-914.	8.3	67
41	<scp>QTL</scp> â€seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (<i><scp>A</scp>rachis hypogaea </i> <scp>L</scp> .). Plant Biotechnology Journal, 2017, 15, 927-941.	8.3	198
42	Sequencing Pigeonpea Genome. Compendium of Plant Genomes, 2017, , 93-97.	0.5	2
43	Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 2016, 7, 455.	3.6	180
44	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	8.3	177
45	Nextâ€generation sequencing for identification of candidate genes for <i>Fusarium</i> wilt and sterility mosaic disease in pigeonpea (<i><scp>C</scp>ajanus cajan</i>). Plant Biotechnology Journal, 2016, 14, 1183-1194.	8.3	108
46	From Mendel's discovery on pea to today's plant genetics and breeding. Theoretical and Applied Genetics, 2016, 129, 2267-2280.	3.6	26
47	Analytical and Decision Support Tools for Genomics-Assisted Breeding. Trends in Plant Science, 2016, 21, 354-363.	8.8	70
48	Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Science, 2016, 242, 330-341.	3.6	99
49	Association of nad7a Gene with Cytoplasmic Male Sterility in Pigeonpea. Plant Genome, 2015, 8, eplantgenome2014.11.0084.	2.8	28
50	Selection and Validation of Housekeeping Genes as Reference for Gene Expression Studies in Pigeonpea (Cajanus cajan) under Heat and Salt Stress Conditions. Frontiers in Plant Science, 2015, 6, 1071.	3.6	48
51	Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan). Frontiers in Plant Science, 2015, 6, 50.	3.6	57
52	Introgression of multiple disease resistance into a maintainer of Basmati rice CMS line by marker assisted backcross breeding. Euphytica, 2015, 203, 97-107.	1.2	22
53	Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (CicerÂarietinum L.). Euphytica, 2015, 205, 381-394.	1.2	18
54	MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics, 2015, 128, 999-1017.	3.6	230

VIKAS K SINGH

#	Article	IF	CITATIONS
55	Identification and Validation of Selected Universal Stress Protein Domain Containing Drought-Responsive Genes in Pigeonpea (Cajanus cajan L.). Frontiers in Plant Science, 2015, 6, 1065.	3.6	39
56	Evaluation and Validation of Housekeeping Genes as Reference for Gene Expression Studies in Pigeonpea (Cajanus cajan) Under Drought Stress Conditions. PLoS ONE, 2015, 10, e0122847.	2.5	67
57	Validation of rapid DNA extraction protocol and their effectiveness in marker assisted selection in crop plants. Indian Journal of Genetics and Plant Breeding, 2015, 75, 110.	0.5	3
58	Markerâ€Assisted Backcrossing to Introgress Resistance to Fusarium Wilt Race 1 and Ascochyta Blight in C 214, an Elite Cultivar of Chickpea. Plant Genome, 2014, 7, plantgenome2013.10.0035.	2.8	132
59	Markerâ€assisted simultaneous but stepwise backcross breeding for pyramiding blast resistance genes <i>Piz5</i> and <i>Pi54</i> into an elite Basmati rice restorer line â€~ <scp>PRR</scp> 78'. Plant Breeding, 2013, 132, 486-495.	1.9	49
60	A draft genome sequence of the pulse crop chickpea (<i><scp>C</scp>icer arietinum</i> ÂL.). Plant Journal, 2013, 74, 715-729.	5.7	382
61	Genetic analysis and molecular mapping of a new fertility restorer gene Rf8 for Triticum timopheevi cytoplasm in wheat (Triticum aestivum L.) using SSR markers. Genetica, 2013, 141, 431-441.	1.1	21
62	Fastâ€Track Introgression of " <i>QTLâ€hotspotâ€</i> for Root Traits and Other Drought Tolerance Traits in JG 11, an Elite and Leading Variety of Chickpea. Plant Genome, 2013, 6, plantgenome2013.07.0022.	2.8	118
63	Molecular breeding for the development of multiple disease resistance in Basmati rice. AoB PLANTS, 2012, 2012, pls029-pls029.	2.3	79
64	Population Structure and Genetic Diversity in Popular Rice Varieties of India as Evidenced from SSR Analysis. Biochemical Genetics, 2012, 50, 770-783.	1.7	24
65	Incorporation of blast resistance into "PRR78â€, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Research, 2012, 128, 8-16.	5.1	121
66	Determination of genetic relationships among elite thermosensitive genic male sterile lines (TGMS) of rice (Oryza sativa L.) employing morphological and simple sequence repeat (SSR) markers. Journal of Genetics, 2011, 90, 11-19.	0.7	9
67	Prediction of hybrid performance based on the genetic distance of parental lines in two-line rice (Oryza sativa L.) hybrids. Journal of Crop Science and Biotechnology, 2011, 14, 1-10.	1.5	15
68	Identification of Genotype Specific Alleles and Molecular Diversity Assessment of Popular Rice (Oryza) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻

69Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine
grain aromatic rice hybrid. Molecular Breeding, 2010, 26, 293-305.2.1122