
Jianping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nature Photonics, 2016, 10, 595-599.	31.4	191
2	Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light: Science and Applications, 2018, 7, 13.	16.6	101
3	Detection of a Superconducting Phase in a Two-Atom Layer of Hexagonal Ga Film Grown on Semiconducting GaN(0001). Physical Review Letters, 2015, 114, 107003.	7.8	81
4	GaN in different dimensionalities: Properties, synthesis, and applications. Materials Science and Engineering Reports, 2019, 138, 60-84.	31.8	39
5	Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si. ACS Photonics, 2018, 5, 699-704.	6.6	37
6	Green laser diodes with low threshold current density via interface engineering of InGaN/GaN quantum well active region. Optics Express, 2017, 25, 415.	3.4	34
7	High-power hybrid GaN-based green laser diodes with ITO cladding layer. Photonics Research, 2020, 8, 279.	7.0	33
8	Design and growth of GaN-based blue and green laser diodes. Science China Materials, 2020, 63, 1348-1363.	6.3	32
9	Hillock formation and suppression on c-plane homoepitaxial GaN Layers grown by metalorganic vapor phase epitaxy. Journal of Crystal Growth, 2013, 371, 7-10.	1.5	23
10	GaN-Based Blue Laser Diodes With 2.2 W of Light Output Power Under Continuous-Wave Operation. IEEE Photonics Technology Letters, 2017, 29, 2203-2206.	2.5	22
11	Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions. Journal of Applied Physics, 2015, 118, 033101.	2.5	17
12	Significant increase of quantum efficiency of green InGaN quantum well by realizing step-flow growth. Applied Physics Letters, 2017, 111, 112102.	3.3	15
13	Investigation of InGaN/GaN laser degradation based on luminescence properties. Journal of Applied Physics, 2016, 119, .	2.5	14
14	Onâ€Chip Hyperuniform Lasers for Controllable Transitions in Disordered Systems. Laser and Photonics Reviews, 2020, 14, 1800296.	8.7	10
15	Performance comparison of front- and back-illuminated modes of the AlGaN-based p-i-n solar-blind ultraviolet photodetectors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 031204.	1.2	9
16	Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation. Applied Physics Letters, 2014, 104, 141105.	3.3	9
17	Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 245-247.	0.8	9
18	Suppression of substrate mode in GaN-based green laser diodes. Optics Express, 2020, 28, 15497.	3.4	9

JIANPING LIU

#	Article	IF	CITATIONS
19	Utilization of polarization-inverted AlInGaN or relatively thinner AlGaN electron blocking layer in InGaN-based blue–violet laser diodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, 011209.	1.2	8
20	Green Vertical-Cavity Surface-Emitting Lasers Based on Combination of Blue-Emitting Quantum Wells and Cavity-Enhanced Recombination. IEEE Transactions on Electron Devices, 2018, 65, 4401-4406.	3.0	8
21	Effects of Lateral Optical Confinement In GaN VCSELs With Double Dielectric DBRs. IEEE Photonics Journal, 2020, 12, 1-8.	2.0	8
22	Greatly suppressed potential inhomogeneity and performance improvement of c-plane InGaN green laser diodes. Science China Materials, 2022, 65, 543-546.	6.3	8
23	Asymmetrical quantum well degradation of InGaN/GaN blue laser diodes characterized by photoluminescence. Applied Physics Letters, 2017, 111, 212102.	3.3	7
24	Enhanced temperature characteristic of InGaN/GaN laser diodes with uniform multiple quantum wells. Semiconductor Science and Technology, 2015, 30, 125015.	2.0	6
25	Multiwavelength GaNâ€Based Surfaceâ€Emitting Lasers and Their Design Principles. Annalen Der Physik, 2020, 532, 1900308.	2.4	5
26	Effect of Graded-Indium-Content Superlattice on the Optical and Structural Properties of Yellow-Emitting InGaN/GaN Quantum Wells. Materials, 2021, 14, 1877.	2.9	5
27	Characteristics of InGaN-based superluminescent diodes with one-sided oblique cavity facet. Science Bulletin, 2014, 59, 1903-1906.	1.7	4
28	Influence of residual carbon impurities in i-GaN layer on the performance of GaN-based p-i-n photodetectors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 011204.	1.2	4
29	Optimization of the cavity facet coating in high power GaN-based semiconductor laser diodes. Science China Technological Sciences, 2012, 55, 883-887.	4.0	3
30	Catastrophic Degradation of InGaN/GaN Blue Laser Diodes. IEEE Transactions on Device and Materials Reliability, 2016, 16, 638-641.	2.0	3
31	Carrier recombination dynamics in green InGaN-LEDs with quantum-dot-like structures. Journal of Materials Science, 2021, 56, 1481-1491.	3.7	3
32	Growth Behaviors of GaN on Stripes of Patterned c-Plane GaN Substrate. Nanomaterials, 2022, 12, 478.	4.1	3
33	The Significant Effect of Carbon and Oxygen Contaminants at Pd/pâ€GaN Interface on Its Ohmic Contact Characteristics. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000603.	1.8	2
34	Investigation of breakdown mechanism during field emission process of AlN thin film microscopic cold cathode. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, 012201.	1.2	1
35	Polarization relaxation in InGaN/(In)GaN multiple quantum wells. Japanese Journal of Applied Physics, 2019, 58, SCCB12.	1.5	1
36	High power GaN-based blue superluminescent diodes with low spectral modulation. AIP Advances, 2021, 11, .	1.3	1

#	Article	IF	CITATIONS
37	Room temperature continuous wave lasing of GaN-based green vertical-cavity surface-emitting lasers. , 2019, , .		1
38	Strain-Related Degradation of GaN-Based Blue Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-5.	2.9	0