Dong-Joo Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/314210/publications.pdf Version: 2024-02-01

DONG-LOO YOO

#	Article	IF	CITATIONS
1	Enabling Silicon Anodes with Novel Isosorbide-Based Electrolytes. ACS Energy Letters, 2022, 7, 897-905.	17.4	20
2	Understanding the Role of SEI Layer in Low-Temperature Performance of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11910-11918.	8.0	29
3	High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy and Environmental Science, 2021, 14, 1420-1428.	30.8	23
4	Tetradiketone macrocycle for divalent aluminium ion batteries. Nature Communications, 2021, 12, 2386.	12.8	84
5	Cobalt(II)â€Centered Fluorinated Phthalocyanineâ€Sulfur S _N Ar Chemistry for Robust Lithium–Sulfur Batteries with Superior Conversion Kinetics. Advanced Functional Materials, 2021, 31, 2106679.	14.9	28
6	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for Highâ€Performance Organic Sodiumâ€Ion Battery Anodes. Angewandte Chemie - International Edition, 2020, 59, 12958-12964.	13.8	52
7	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie, 2020, 132, 14979-14986.	2.0	16
8	Fluorinated Aromatic Diluent for Highâ€Performance Lithium Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 14869-14876.	13.8	130
9	Elucidating the Extraordinary Rate and Cycling Performance of Phenanthrenequinone in Aluminum-Complex-Ion Batteries. Journal of Physical Chemistry Letters, 2020, 11, 2384-2392.	4.6	25
10	Switching between Local and Global Aromaticity in a Conjugated Macrocycle for Highâ€Performance Organic Sodiumâ€ion Battery Anodes. Angewandte Chemie, 2020, 132, 13058-13064.	2.0	12
11	Marginal Magnesium Doping for Highâ€Performance Lithium Metal Batteries. Advanced Energy Materials, 2019, 9, 1902278.	19.5	47
12	Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901645.	21.0	68
13	Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries. Applied Surface Science, 2019, 484, 933-940.	6.1	22
14	Rechargeable aluminium organic batteries. Nature Energy, 2019, 4, 51-59.	39.5	283
15	The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes. Advanced Energy Materials, 2018, 8, 1702744.	19.5	137
16	Tuning the Electron Density of Aromatic Solvent for Stable Solidâ€Electrolyteâ€Interphase Layer in Carbonateâ€Based Lithium Metal Batteries. Advanced Energy Materials, 2018, 8, 1802365.	19.5	48
17	Stable Performance of Aluminumâ€Metal Battery by Incorporating Lithiumâ€Ion Chemistry. ChemElectroChem, 2017, 4, 2345-2351.	3.4	20
18	Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery. Journal of Physical Chemistry C, 2016, 120, 13384-13389.	3.1	164

#	Article	IF	CITATIONS
19	Poreless Separator and Electrolyte Additive for Lithium–Sulfur Batteries with High Areal Energy Densities. ChemNanoMat, 2015, 1, 240-245.	2.8	45
20	A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability. Nano Letters, 2015, 15, 2350-2357.	9.1	78