Simon P Ringer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3142030/publications.pdf Version: 2024-02-01

		7568	12946
514	24,127	77	131
papers	citations	h-index	g-index
521	521	521	19381
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?. Angewandte Chemie - International Edition, 2010, 49, 2114-2138.	13.8	1,301
2	Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dental Materials, 2004, 20, 449-456.	3.5	703
3	Nanostructural hierarchy increases the strength of aluminium alloys. Nature Communications, 2010, 1, 63.	12.8	552
4	Carbon nanotubes for biological and biomedical applications. Nanotechnology, 2007, 18, 412001.	2.6	522
5	Atom Probe Microscopy. Springer Series in Materials Science, 2012, , .	0.6	501
6	Microstructural Evolution and Age Hardening in Aluminium Alloys. Materials Characterization, 2000, 44, 101-131.	4.4	446
7	Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions. Journal of the American Chemical Society, 2005, 127, 6730-6736.	13.7	409
8	Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dental Materials, 2004, 20, 441-448.	3.5	351
9	Origins of hardening in aged Alî—,Guî—,Mgî—,(Ag) alloys. Acta Materialia, 1997, 45, 3731-3744.	7.9	303
10	Titanate Nanotubes and Nanorods Prepared from Rutile Powder. Advanced Functional Materials, 2005, 15, 1310-1318.	14.9	291
11	New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data. Microscopy and Microanalysis, 2007, 13, 448-463.	0.4	281
12	Toward Ubiquitous Environmental Gas Sensors—Capitalizing on the Promise of Graphene. Environmental Science & Technology, 2010, 44, 1167-1176.	10.0	266
13	Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Materialia, 2009, 57, 3123-3132.	7.9	253
14	Nucleation of precipitates in aged AlCuMg(Ag) alloys with high Cu:Mg ratios. Acta Materialia, 1996, 44, 1883-1898.	7.9	243
15	Advances in the calibration of atom probe tomographic reconstruction. Journal of Applied Physics, 2009, 105, .	2.5	214
16	Solute segregation and texture modification in an extruded magnesium alloy containing gadolinium. Scripta Materialia, 2011, 65, 919-921.	5.2	207
17	Quantitative binomial distribution analyses of nanoscale likeâ€solute atom clustering and segregation in atom probe tomography data. Microscopy Research and Technique, 2008, 71, 542-550.	2.2	198
18	Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 1659-1671.	2.2	197

#	Article	IF	CITATIONS
19	Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes. Acta Materialia, 2011, 59, 1659-1670.	7.9	191
20	Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing. Acta Materialia, 2010, 58, 4923-4939.	7.9	189
21	Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Science Advances, 2021, 7, .	10.3	176
22	Long-Chain Terminal Alcohols through Catalytic CO Hydrogenation. Journal of the American Chemical Society, 2013, 135, 7114-7117.	13.7	169
23	Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion. Acta Materialia, 2019, 162, 19-32.	7.9	166
24	Microstructural evolution, strengthening and thermal stability of an ultrafine-grained Al–Cu–Mg alloy. Acta Materialia, 2016, 109, 202-212.	7.9	163
25	Ageing behaviour of an Fe–20Ni–1.8Mn–1.6Ti–0.59Al (wt%) maraging alloy: clustering, precipitation and hardening. Acta Materialia, 2004, 52, 5589-5602.	7.9	159
26	Atom probe crystallography. Materials Today, 2012, 15, 378-386.	14.2	158
27	Role of point defects in room-temperature ferromagnetism of Cr-doped ZnO. Applied Physics Letters, 2007, 91, 072511.	3.3	155
28	New insights into the phase transformations to isothermal ω and ω-assisted α in near β-Ti alloys. Acta Materialia, 2016, 106, 353-366.	7.9	155
29	Spatial Resolution in Atom Probe Tomography. Microscopy and Microanalysis, 2010, 16, 99-110.	0.4	153
30	Precipitate stability in Alî—,Cuî—,Mgî—,Ag alloys aged at high temperatures. Acta Metallurgica Et Materialia, 1994, 42, 1715-1725.	1.8	146
31	Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Materialia, 2015, 82, 100-114.	7.9	146
32	Estimation of the Reconstruction Parameters for Atom Probe Tomography. Microscopy and Microanalysis, 2008, 14, 296-305.	0.4	143
33	Analysis of strengthening in AA6111 during the early stages of aging: Atom probe tomography and yield stress modelling. Acta Materialia, 2013, 61, 7285-7303.	7.9	142
34	The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4959-4966.	5.6	141
35	Cluster hardening in an aged Al-Cu-Mg alloy. Scripta Materialia, 1997, 36, 517-521.	5.2	135
36	The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Materialia, 2012, 60, 3181-3189.	7.9	134

#	Article	IF	CITATIONS
37	A reproducible method for damageâ€free siteâ€specific preparation of atom probe tips from interfaces. Microscopy Research and Technique, 2012, 75, 484-491.	2.2	134
38	Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357. Acta Materialia, 2012, 60, 692-701.	7.9	132
39	Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy, 2009, 109, 815-824.	1.9	129
40	On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Materialia, 2018, 144, 365-375.	7.9	127
41	Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Materialia, 2014, 63, 169-179.	7.9	123
42	The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy. Scripta Materialia, 1999, 41, 1031-1038.	5.2	121
43	Mechanisms for enhanced plasticity in magnesium alloys. Acta Materialia, 2015, 82, 344-355.	7.9	119
44	Isolated copper–tin atomic interfaces tuning electrocatalytic CO2 conversion. Nature Communications, 2021, 12, 1449.	12.8	119
45	The effect of trace additions of sn on precipitation in Al-Cu alloys: An atom probe field ion microscopy study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2207-2217.	2.2	117
46	Precipitation processes in Al-Cu-Mg alloys microalloyed with Si. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 2721-2733.	2.2	115
47	Super Deformability and Young's Modulus of GaAs Nanowires. Advanced Materials, 2011, 23, 1356-1360.	21.0	114
48	Segregation of solute elements at grain boundaries in an ultrafine grained Al–Zn–Mg–Cu alloy. Ultramicroscopy, 2011, 111, 500-505.	1.9	107
49	Growth of Boehmite Nanofibers by Assembling Nanoparticles with Surfactant Micelles. Journal of Physical Chemistry B, 2004, 108, 4245-4247.	2.6	106
50	Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing. Acta Materialia, 2010, 58, 1795-1805.	7.9	102
51	Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Materialia, 2011, 59, 3903-3914.	7.9	98
52	Contribution of high-resolution correlative imaging techniques in the study of the liver sieve in three-dimensions. Microscopy Research and Technique, 2007, 70, 230-242.	2.2	97
53	Structural, optical and magnetic properties of Co-doped ZnO nanorods with hidden secondary phases. Nanotechnology, 2008, 19, 455702.	2.6	96
54	On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philosophical Magazine Letters, 2010, 90, 121-129.	1.2	96

#	Article	IF	CITATIONS
55	Atom probe tomography and transmission electron microscopy characterisation of precipitation in an Al–Cu–Li–Mg–Ag alloy. Ultramicroscopy, 2011, 111, 683-689.	1.9	96
56	Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels. Acta Materialia, 2013, 61, 2521-2530.	7.9	96
57	Low temperature bainitic ferrite: Evidence of carbon super-saturation and tetragonality. Acta Materialia, 2015, 91, 162-173.	7.9	94
58	Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Materialia, 2011, 64, 327-330.	5.2	93
59	In Situ Selfâ€Assembly of Thin ZnO Nanoplatelets into Hierarchical Mesocrystal Microtubules with Surface Grafting of Nanorods: A General Strategy towards Hollow Mesocrystal Structures. Advanced Materials, 2008, 20, 339-342.	21.0	92
60	Origin of the initial rapid age hardening in an Al-1.7 at.% Mg-1.1 at.% Cu alloy. Philosophical Magazine Letters, 1999, 79, 639-648.	1.2	91
61	Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 734-743.	2.2	91
62	Strengthening from Nb-rich clusters in a Nb-microalloyed steel. Scripta Materialia, 2012, 66, 710-713.	5.2	91
63	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Materialia, 2014, 63, 16-29.	7.9	90
64	Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting. Acta Materialia, 2020, 196, 609-625.	7.9	89
65	Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	10.3	89
66	Performance modulation of α-MnO2 nanowires by crystal facet engineering. Scientific Reports, 2015, 5, 8987.	3.3	88
67	Precipitation strengthening in an ultralight magnesium alloy. Nature Communications, 2019, 10, 1003.	12.8	88
68	Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	3.3	87
69	Attractive-domain-wall-pinning controlled Sm-Co magnets overcome the coercivity-remanence trade-off. Acta Materialia, 2019, 164, 196-206.	7.9	87
70	Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 48-60.	5.6	85
71	The future of atom probe tomography. Materials Today, 2012, 15, 158-165.	14.2	85
72	Response to comments on cluster hardening in an aged Al-Cu-Mg alloy. Scripta Materialia, 1998, 39, 1559-1567.	5.2	83

#	Article	IF	CITATIONS
73	The mechanism for the enhanced piezoelectricity in multi-elements doped (K,Na)NbO3 ceramics. Nature Communications, 2021, 12, 881.	12.8	82
74	On the interaction and pinning of grain boundaries by cubic shaped precipitate particles. Acta Metallurgica, 1989, 37, 831-841.	2.1	81
75	Precipitation processes during the early stages of ageing in Alî—,Cuî—,Mg alloys. Applied Surface Science, 1996, 94-95, 253-260.	6.1	81
76	Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography. Journal of Applied Physics, 2010, 108, .	2.5	81
77	Nanocrystalline β-Ti alloy with high hardness, low Young's modulus and excellent in vitro biocompatibility for biomedical applications. Materials Science and Engineering C, 2013, 33, 3530-3536.	7.3	81
78	On conventional versus direct ageing of Alloy 718. Acta Materialia, 2018, 156, 116-124.	7.9	81
79	Origin of the spatial resolution in atom probe microscopy. Applied Physics Letters, 2009, 95, 034103.	3.3	80
80	Precipitation processes in an Al-2.5Cu-1.5Mg (wt. %) alloy microalloyed with Ag and Si. Acta Materialia, 2003, 51, 5037-5050.	7.9	79
81	In Situ Formation of BN Nanotubes during Nitriding Reactions. Chemistry of Materials, 2005, 17, 5172-5176.	6.7	78
82	Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Materialia, 2007, 56, 601-604.	5.2	78
83	Precipitation reactions in Al–4.0Cu–0.3Mg (wt.%) alloy. Acta Materialia, 2008, 56, 2147-2160.	7.9	77
84	Self-Assembly and Self-Orientation of Truncated Octahedral Magnetite Nanocrystals. Advanced Materials, 2006, 18, 2418-2421.	21.0	76
85	Nanostructured Al–Al2O3 composite formed in situ during consolidation of ultrafine Al particles by back pressure equal channel angular pressing. Acta Materialia, 2009, 57, 4321-4330.	7.9	76
86	Grain size and reversible beta-to-omega phase transformation in a Ti alloy. Scripta Materialia, 2010, 63, 613-616.	5.2	75
87	Euâ€doped Boron Nitride Nanotubes as a Nanometer‣ized Visibleâ€Light Source. Advanced Materials, 2007, 19, 1845-1848.	21.0	74
88	Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO ₂ core–shell nanowire arrays by electrophoretic deposition. Nanotechnology, 2009, 20, 055601.	2.6	72
89	Dynamic reconstruction for atom probe tomography. Ultramicroscopy, 2011, 111, 1619-1624.	1.9	72
90	Quantitative atom probe analysis of nanostructure containing clusters and precipitates with multiple length scales. Ultramicroscopy, 2011, 111, 738-742.	1.9	72

#	Article	IF	CITATIONS
91	Introducing a strain-hardening capability to improve the ductility of bulk metallic glasses via severe plastic deformation. Acta Materialia, 2012, 60, 253-260.	7.9	72
92	Atom probe specimen fabrication methods using a dual FIB/SEM. Ultramicroscopy, 2007, 107, 756-760.	1.9	71
93	Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Materialia, 2021, 203, 116455.	7.9	71
94	Strengthening of an Al–Cu–Mg alloy processed by high-pressure torsion due to clusters, defects and defect–cluster complexes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 10-20.	5.6	70
95	Evidence for high- <mml:math <br="" xmins:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mi>c</mml:mi></mml:msub>in<mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Zn</mml:mtext></mml:mrow><mml:mi>x<</mml:mi></mml:msub></mml:mrow></mml:math></mml:mrow></mml:math>	v> 3.2 /mml:mi>	nath>ferrom 69
96	Physica Aceview 6, 2009, 80, . Atom probe microscopy investigation of Mg site occupancy within δâ€2 precipitates in an Al–Mg–Li alloy. Scripta Materialia, 2012, 66, 903-906.	5.2	65
97	Unusual macroscopic shearing patterns observed in metals processed by high-pressure torsion. Journal of Materials Science, 2010, 45, 4545-4553.	3.7	64
98	Atomistic structure of Cu-containing β″ precipitates in an Al–Mg–Si–Cu alloy. Scripta Materialia, 2014, 75, 86-89.	5.2	63
99	A visualization of shear strain in processing by high-pressure torsion. Journal of Materials Science, 2010, 45, 765-770.	3.7	62
100	Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Physical Review B, 2011, 84, .	3.2	62
101	Atom Probe Tomography Analysis of Boron and/or Phosphorus Distribution in Doped Silicon Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 17845-17852.	3.1	62
102	Contingency table techniques for three dimensional atom probe tomography. Microscopy Research and Technique, 2007, 70, 258-268.	2.2	61
103	Precipitation and clustering in the early stages of ageing in Inconel 718. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7770-7774.	5.6	61
104	Investigating the microstructure and composition of cold gas-dynamic spray (CGDS) Ti powder deposited on Al 6063 substrate. Surface and Coatings Technology, 2010, 204, 3739-3749.	4.8	61
105	Effect of a High Density of Stacking Faults on the Young's Modulus of GaAs Nanowires. Nano Letters, 2016, 16, 1911-1916.	9.1	61
106	The effects of processing and organoclay properties on the structure of poly(methyl) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 3.8	142 Td (met
107	Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy, 2010, 110, 836-843.	1.9	60

¹⁰⁸Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation.1.959108Ultramicroscopy, 2011, 111, 458-463.59

#	Article	IF	CITATIONS
109	Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy. Microscopy and Microanalysis, 2011, 17, 226-239.	0.4	58
110	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scripta Materialia, 2015, 100, 98-101.	5.2	58
111	Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Materialia, 2016, 109, 300-313.	7.9	58
112	On the early stages of precipitation during direct ageing of Alloy 718. Acta Materialia, 2020, 188, 492-503.	7.9	58
113	Role of structural defects on ferromagnetism in amorphous Cr-doped TiO2 films. Applied Physics Letters, 2006, 89, 042511.	3.3	57
114	Atom probe crystallography: Atomic-scale 3-D orientation mapping. Scripta Materialia, 2012, 66, 907-910.	5.2	57
115	A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data. Philosophical Magazine, 2010, 90, 1657-1683.	1.6	56
116	New approaches to nanoparticle sample fabrication for atom probe tomography. Ultramicroscopy, 2015, 159, 413-419.	1.9	56
117	Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate. Physical Review B, 2012, 85, .	3.2	54
118	Atomic-Scale Tomography: A 2020 Vision. Microscopy and Microanalysis, 2013, 19, 652-664.	0.4	54
119	An automated method of quantifying ferrite microstructures using electron backscatter diffraction (EBSD) data. Ultramicroscopy, 2014, 137, 40-47.	1.9	54
120	Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel. Journal of Alloys and Compounds, 2017, 690, 621-632.	5.5	54
121	Characterization of the Bake-hardening Behavior of Transformation Induced Plasticity and Dual-phase Steels Using Advanced Analytical Techniques. ISIJ International, 2010, 50, 574-582.	1.4	53
122	Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy, 2013, 132, 107-113.	1.9	53
123	Atomically resolved tomography to directly inform simulations for structure–property relationships. Nature Communications, 2014, 5, 5501.	12.8	53
124	Evolution of microstructure and mechanical properties in 2205 duplex stainless steels during additive manufacturing and heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 835, 142695.	5.6	53
125	Influence of field evaporation on Radial Distribution Functions in Atom Probe Tomography. Philosophical Magazine, 2009, 89, 925-943.	1.6	52
126	A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel. Acta Materialia, 2012, 60, 5049-5055.	7.9	52

#	Article	IF	CITATIONS
127	Impact of laser pulsing on the reconstruction in an atom probe tomography. Ultramicroscopy, 2010, 110, 1215-1222.	1.9	51
128	Atom probe trajectory mapping using experimental tip shape measurements. Journal of Microscopy, 2011, 244, 170-180.	1.8	51
129	Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 119-130.	5.6	51
130	Atom probe crystallography: Characterization of grain boundary orientation relationships in nanocrystalline aluminium. Ultramicroscopy, 2011, 111, 493-499.	1.9	51
131	The effects of a trace addition of silver upon elevated temperature ageing of an Al–Zn–Mg alloy. Micron, 2001, 32, 741-747.	2.2	50
132	Single-Crystalline, Submicrometer-Sized ZnSe Tubes. Advanced Materials, 2005, 17, 975-979.	21.0	50
133	Formation of Colloidal Hydroxy-Sodalite Nanocrystals by the Direct Transformation of Silicalite Nanocrystals. Chemistry of Materials, 2006, 18, 1394-1396.	6.7	50
134	Electrical Conductivity Studies on Individual Conjugated Polymer Nanowires: Two-Probe and Four-Probe Results. Nanoscale Research Letters, 2010, 5, 237-42.	5.7	50
135	llmenite FeTiO ₃ Nanoflowers and Their Pseudocapacitance. Journal of Physical Chemistry C, 2011, 115, 17297-17302.	3.1	50
136	Mining information from atom probe data. Ultramicroscopy, 2015, 159, 324-337.	1.9	50
137	Sintering of binderless TiN and TiCN-based cermet for toughness applications: Processing techniques and mechanical properties: A review. Ceramics International, 2019, 45, 21077-21090.	4.8	50
138	Manipulating the size and morphology of aluminum hydrous oxide nanoparticles by soft-chemistry approaches. Microporous and Mesoporous Materials, 2005, 85, 226-233.	4.4	48
139	Self-Healing of Fractured GaAs Nanowires. Nano Letters, 2011, 11, 1546-1549.	9.1	48
140	Microstructure and mechanical properties of Mg–6Zn–xCu–0.6Zr (wt.%) alloys. Journal of Alloys and Compounds, 2011, 509, 3526-3531.	5.5	48
141	in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo´ stretchy="false">(<mml:msub><mml:mi>Ba</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo< td=""><td>>â^'7.8</td><td>l:mo><mml: 48</mml: </td></mml:mo<></mml:mrow></mml:msub></mml:mo´ </mml:math>	>â^'7.8	l:mo> <mml: 48</mml:
142	Physical Review Letters, 2011, 106, 247002 Probing the Structure of Colloidal Core/Shell Quantum Dots Formed by Cation Exchange. Journal of Physical Chemistry C, 2012, 116, 3968-3978.	3.1	48
143	Short-range order in multicomponent materials. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, 547-560.	0.3	47
144	Crystal Facet Effects on Nanomagnetism of Co ₃ O ₄ . ACS Applied Materials & Interfaces, 2018, 10, 19235-19247.	8.0	47

#	Article	IF	CITATIONS
145	Medium-range order dictates local hardness in bulk metallic glasses. Materials Today, 2021, 44, 48-57.	14.2	47
146	One-Step Synthesis and Structural Features of CdS/Montmorillonite Nanocomposites. Journal of Physical Chemistry B, 2005, 109, 2673-2678.	2.6	46
147	The anatomy of grain boundaries: Their structure and atomic-level solute distribution. Scripta Materialia, 2013, 69, 622-625.	5.2	46
148	Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data. Microscopy and Microanalysis, 2017, 23, 279-290.	0.4	46
149	High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 2010, 62, 214-217.	5.2	45
150	Electrodeposited PEDOT films on ITO with a flower-like hierarchical structure. Synthetic Metals, 2010, 160, 1636-1641.	3.9	45
151	Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3398-3403.	5.6	45
152	Strengthening Brittle Semiconductor Nanowires through Stacking Faults: Insights from in Situ Mechanical Testing. Nano Letters, 2013, 13, 4369-4373.	9.1	45
153	Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Superconductor Science and Technology, 2010, 23, 085003.	3.5	44
154	Determination of Young's Modulus of Ultrathin Nanomaterials. Nano Letters, 2015, 15, 5279-5283.	9.1	44
155	Detecting and extracting clusters in atom probe data: A simple, automated method using Voronoi cells. Ultramicroscopy, 2015, 150, 30-36.	1.9	44
156	Effects of microalloying with Cd and Ag on the precipitation process of Al–4Cu–0.3Mg (wt%) alloy at 200°C. Micron, 2001, 32, 851-856.	2.2	43
157	On the roles of clusters during intragranular nucleation in the absence of static defects. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1649-1658.	2.2	43
158	Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	3.3	43
159	Magic numbers of nanoholes in graphene: Tunable magnetism and semiconductivity. Physical Review B, 2011, 84, .	3.2	43
160	Enhanced grain refinement of an Al–Mg–Si alloy by high-pressure torsion processing at 100°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 415-418.	5.6	43
161	Identification and modulation of electronic band structures of single-phase β-(AlxGa1â~'x)2O3 alloys grown by laser molecular beam epitaxy. Applied Physics Letters, 2018, 113, .	3.3	43
162	Solid phase mechanochemical synthesis of polyaniline branched nanofibers. Synthetic Metals, 2009, 159, 1302-1307.	3.9	42

#	Article	IF	CITATIONS
163	Effect of Nb Microalloying and Hot Rolling on Microstructure and Properties of Ultrathin Cast Strip Steels Produced by the CASTRIP® Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2199-2206.	2.2	42
164	Growth of SAPO-34 in polymer hydrogels through vapor-phase transport. Microporous and Mesoporous Materials, 2005, 85, 267-272.	4.4	41
165	Ultrafine pure aluminium through back pressure equal channel angular consolidation (BP-ECAC) of particles. Journal of Materials Science, 2007, 42, 1551-1560.	3.7	41
166	Structural and electronic properties of Eu- and Pd-doped ZnO. Nanoscale Research Letters, 2011, 6, 357.	5.7	41
167	Shaping the lens of the atom probe: Fabrication of site specific, oriented specimens and application to grain boundary analysis. Ultramicroscopy, 2011, 111, 435-439.	1.9	41
168	Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys. Materials Characterization, 2016, 118, 352-362.	4.4	41
169	Precipitation behaviors of cubic and tetragonal Zr–rich phase in Al–(Si–)Zr alloys. Journal of Alloys and Compounds, 2016, 674, 125-130.	5.5	41
170	Facilitation of Ferroelectric Switching via Mechanical Manipulation of Hierarchical Nanoscale Domain Structures. Physical Review Letters, 2017, 118, 017601.	7.8	41
171	Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters. Acta Materialia, 2018, 158, 340-353.	7.9	41
172	Thermal-strain-induced enhancement of electromagnetic properties of SiC–MgB2 composites. Applied Physics Letters, 2009, 94, 042510.	3.3	40
173	First principles study of 3d transition metal doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0020.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Cu</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi>, /mml:mi></mml:mi>, /mml:mi>, /</mml:mrow></mml:mrow></mml:msub></mml:math 	ກໄ ສເຄ > </td <td>mmlønrow><</td>	mm lø nrow><
174	324, 3138-3143. A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography. Microscopy and Microanalysis, 2012, 18, 359-364.	0.4	40
175	In situ analysis of Refractory Metal Nuggets in carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2017, 216, 61-81.	3.9	40
176	Assessment of temper embrittlement in an ex-service 1Cr–1Mo–0.25V power generating rotor by Charpy V-Notch testing, Klc fracture toughness and small punch test. International Journal of Pressure Vessels and Piping, 2002, 79, 611-615.	2.6	39
177	The effects of intragallery polymerization on the structure of PMMA–clay nanocomposites. Polymer, 2005, 46, 9574-9584.	3.8	39
178	Selective Oxidation Synthesis of MnCr ₂ O ₄ Spinel Nanowires from Commercial Stainless Steel Foil. Crystal Growth and Design, 2007, 7, 2279-2281.	3.0	39
179	Solute clustering and solute nanostructures in an Al–3.5Cu–0.4Mg–0.2Ge alloy. Acta Materialia, 2013, 61, 3724-3734.	7.9	39
180	Anelastic Behavior in GaAs Semiconductor Nanowires. Nano Letters, 2013, 13, 3169-3172.	9.1	39

#	Article	IF	CITATIONS
181	Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4742-4749.	5.6	38
182	De-twinning via secondary twinning in face-centered cubic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 110-114.	5.6	38
183	Unabridged phase diagram for single-phased FeSexTe1-x thin films. Scientific Reports, 2014, 4, 7273.	3.3	38
184	Giant tuning of ferroelectricity in single crystals by thickness engineering. Science Advances, 2020, 6, .	10.3	38
185	Doping Process of 2D Materials Based on the Selective Migration of Dopants to the Interface of Liquid Metals. Advanced Materials, 2021, 33, e2104793.	21.0	38
186	A study of the composition dependence of the rapid hardening phenomenon in Al–Cu–Mg alloys using diffusion couples. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 546, 153-161.	5.6	37
187	Applying computational geometry techniques for advanced feature analysis in atom probe data. Ultramicroscopy, 2013, 132, 100-106.	1.9	37
188	Effect of niobium clustering and precipitation on strength of an NbTi-microalloyed ferritic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 226-235.	5.6	36
189	Ionic Liquid-assisted Synthesis of Polyaniline/Gold Nanocomposite and Its Biocatalytic Application. Nanoscale Research Letters, 2008, 3, 468-472.	5.7	35
190	Quantitative description of atomic architecture in solid solutions: A generalized theory for multicomponent short-range order. Physical Review B, 2010, 82, .	3.2	35
191	Electro-synthesis of novel nanostructured PEDOT films and their application as catalyst support. Nanoscale Research Letters, 2011, 6, 364.	5.7	35
192	Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters. Ultramicroscopy, 2011, 111, 397-404.	1.9	35
193	Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scripta Materialia, 2014, 72-73, 35-38.	5.2	35
194	Manipulation of Nanoscale Domain Switching Using an Electron Beam with Omnidirectional Electric Field Distribution. Physical Review Letters, 2016, 117, 027601.	7.8	35
195	Enhanced strength-plasticity combination in an Al–Cu–Mg alloy——atomic scale microstructure regulation and strengthening mechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139447.	5.6	35
196	Unconventional Ribbon-Shaped β-Ga ₂ O ₃ Tubes with Mobile Sn Nanowire Fillings. ACS Nano, 2008, 2, 107-112.	14.6	34
197	Investigation of Self-assembled Monolayer by Atom Probe Microscopy. Microscopy and Microanalysis, 2009, 15, 272-273.	0.4	34
198	Effect of Sn Addition in Preprecipitation Stage in Al-Cu Alloys: A Correlative Transmission Electron Microscopy and Atom Probe Tomography Study. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2192-2202.	2.2	34

#	Article	IF	CITATIONS
199	Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel. Scripta Materialia, 2014, 75, 74-77.	5.2	34
200	Internal co-precipitation in aged Al–1.7Cu–0.3Mg–0.1Ge (at.%) alloy. Acta Materialia, 2008, 56, 1933-1941	7.9	33
201	Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. Journal of Applied Physics, 2009, 105, .	2.5	33
202	Mechanical behaviors of as-deposited and annealed nanostructured Ni–Fe alloys. Scripta Materialia, 2011, 65, 1-4.	5.2	33
203	Optimisation of specimen temperature and pulse fraction in atom probe microscopy experiments on a microalloyed steel. Ultramicroscopy, 2011, 111, 648-651.	1.9	33
204	The effect of pre-existing defects on the strength and deformation behavior of α-Fe nanopillars. Acta Materialia, 2013, 61, 439-452.	7.9	33
205	Segregation of the major alloying elements to Al3(Sc,Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Materials Characterization, 2019, 157, 109898.	4.4	33
206	Enhanced glass forming ability of Fe–Co–Zr–Mo–W–B alloys with Ni addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 402, 188-192.	5.6	32
207	Observation of Precipitation Evolution in Fe-Ni-Mn-Ti-Al Maraging Steel by Atom Probe Tomography. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3069-3075.	2.2	32
208	Correlation between precipitates evolution and mechanical properties of Al-Sc-Zr alloy with Er additions. Journal of Materials Science and Technology, 2022, 99, 61-72.	10.7	32
209	On the mechanism of Mn partitioning during intercritical annealing in medium Mn steels. Acta Materialia, 2022, 225, 117601.	7.9	32
210	Synthesis and characterization of sodalite–polyimide nanocomposite membranes. Microporous and Mesoporous Materials, 2009, 126, 14-19.	4.4	31
211	Room-temperature ferromagnetism and the scaling relation between magnetization and average granule size in nanocrystalline Zn/ZnO core–shell structures prepared by sputtering. Nanotechnology, 2010, 21, 145705.	2.6	31
212	Breaking the icosahedra in boron carbide. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12012-12016.	7.1	31
213	Multimodal γ′ precipitation in Inconel-738 Ni-based superalloy during electron-beam powder bed fusion additive manufacturing. Journal of Materials Science, 2020, 55, 13342-13350.	3.7	31
214	Site-specific specimen preparation for atom probe tomography of grain boundaries. Physica B: Condensed Matter, 2007, 394, 267-269.	2.7	30
215	Effect of laser pulsing on the composition measurement of an Al–Mg–Si–Cu alloy using three-dimensional atom probe. Ultramicroscopy, 2009, 109, 580-584.	1.9	30
216	Hardening and microstructural reactions in high-temperature equal-channel angular pressed Mg–Nd–Gd–Zn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5092-5099.	5.6	30

#	Article	IF	CITATIONS
217	Enhanced age-hardening response of Al–4Mg–1Cu (wt.%) microalloyed with Ag and Si. Scripta Materialia, 2013, 68, 857-860.	5.2	30
218	Resolving the Morphology of Niobium Carbonitride Nano-Precipitates in Steel Using Atom Probe Tomography. Microscopy and Microanalysis, 2014, 20, 1100-1110.	0.4	30
219	Atom probe study of chromium oxide spinels formed during intergranular corrosion. Scripta Materialia, 2015, 99, 1-4.	5.2	30
220	Direct observation of nanoscale dynamics of ferroelectric degradation. Nature Communications, 2021, 12, 2095.	12.8	30
221	Atom Probe Tomography of Solute Distributions in Mg-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 2480-2487.	2.2	29
222	Quantitative dopant distributions in GaAs nanowires using atom probe tomography. Ultramicroscopy, 2013, 132, 186-192.	1.9	29
223	The effects of microalloying on the precipitate microstructure at grain boundary regions in an Mg-Zn-based alloy. Materials and Design, 2017, 119, 290-296.	7.0	29
224	Five-parameter characterization of intervariant boundaries in additively manufactured Ti-6Al-4V. Materials and Design, 2020, 196, 109177.	7.0	29
225	Advanced Nanostructural Analysis of Aluminium Alloys Using Atom Probe Tomography. Materials Science Forum, 2006, 519-521, 25-34.	0.3	28
226	Atom Probe Microscopy of Self-Assembled Monolayers: Preliminary Results. Langmuir, 2010, 26, 5291-5294.	3.5	28
227	Martensitic transformation in an intergranular corrosion area of austenitic stainless steel during thermal cycling. Corrosion Science, 2014, 85, 1-6.	6.6	28
228	Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al–Cu–Li alloys. Journal of Microscopy, 2014, 255, 128-137.	1.8	28
229	Nanoscale characterization of silica soots and aluminium solution doping in optical fibre fabrication. Journal of Non-Crystalline Solids, 2006, 352, 3799-3807.	3.1	27
230	Microstructural evolution of spinodally formed Fe35Ni15Mn25Al25. Intermetallics, 2009, 17, 886-893.	3.9	27
231	Structural Materials: Understanding Atomic-Scale Microstructures. MRS Bulletin, 2009, 34, 725-731.	3.5	27
232	Microstructural investigation of Ti–Si–N hard coatings. Scripta Materialia, 2010, 63, 192-195.	5.2	27
233	A new systematic framework for crystallographic analysis of atom probe data. Ultramicroscopy, 2015, 154, 7-14.	1.9	27
234	Effect of sample orientation and initial microstructures on the dynamic recrystallization of a Magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 150-154.	5.6	27

#	Article	IF	CITATIONS
235	Electron microscopy and microanalysis of a YBa2Cu3Oxsuperconducting oxide. Applied Physics Letters, 1987, 51, 535-537.	3.3	26
236	Synthesis of dense, single-crystalline CrO ₂ nanowire arrays using AAO template-assisted chemical vapor deposition. Nanotechnology, 2011, 22, 125603.	2.6	26
237	Hydrogen-induced decomposition of Zr-rich cores in an Mgâ^'6Znâ^'0.6Zrâ^'0.5Cu alloy. Acta Materialia, 2012, 60, 5615-5625.	7.9	26
238	Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 2012, 7, 165.	5.7	26
239	Cluster strengthening of Nb-microalloyed ultra-thin cast strip steels produced by the CASTRIP® process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 568, 88-95.	5.6	26
240	Atomic-scale observation of parallel development of super elasticity and reversible plasticity in GaAs nanowires. Applied Physics Letters, 2014, 104, .	3.3	26
241	Quantitative chemical-structure evaluation using atom probe tomography: Short-range order analysis of Fe–Al. Ultramicroscopy, 2015, 157, 12-20.	1.9	26
242	Nanoscale pathways for human tooth decay – Central planar defect, organic-rich precipitate and high-angle grain boundary. Biomaterials, 2020, 235, 119748.	11.4	26
243	The segregation of transition metals to iron grain boundaries and their effects on cohesion. Acta Materialia, 2022, 231, 117902.	7.9	26
244	Solute clustering, segregation and microstructure in high strength low alloy Al–Cu–Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 250, 120-126.	5.6	25
245	Zeolite crystallization in crosslinked chitosan hydrogels: Crystal size control and chitosan removal. Microporous and Mesoporous Materials, 2008, 116, 416-423.	4.4	25
246	Visualizing Plasmon Coupling in Closely Spaced Chains of Ag Nanoparticles by Electron Energy‣oss Spectroscopy. Small, 2010, 6, 446-451.	10.0	25
247	The rise of computational techniques in atom probe microscopy. Current Opinion in Solid State and Materials Science, 2013, 17, 224-235.	11.5	25
248	3D electron backscatter diffraction study of α lath morphology in additively manufactured Ti-6Al-4V. Ultramicroscopy, 2020, 218, 113073.	1.9	25
249	Introducing transformation twins in titanium alloys: an evolution of α-variants during additive manufacturing. Materials Research Letters, 2021, 9, 119-126.	8.7	25
250	Phase transformation pathways in Ti-6Al-4V manufactured via electron beam powder bed fusion. Acta Materialia, 2021, 215, 117131.	7.9	25
251	Effect of additions of Si and Ag to ternary Al-Cu-Mg alloys in the α + S phase field. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 273-276.	5.6	24
252	Estimating the physical clusterâ€size distribution within materials using atomâ€probe. Microscopy Research and Technique, 2011, 74, 799-803.	2.2	24

#	Article	IF	CITATIONS
253	An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces. Computer Physics Communications, 2010, 181, 676-682.	7.5	24
254	Hidden secrets of deformation: Impact-induced compaction within a CV chondrite. Earth and Planetary Science Letters, 2016, 452, 133-145.	4.4	24
255	On the pitting corrosion of 2205 duplex stainless steel produced by laser powder bed fusion additive manufacturing in the as-built and post-processed conditions. Materials and Design, 2021, 212, 110260.	7.0	24
256	Organic-functionalized sodalite nanocrystals and their dispersion in solvents. Microporous and Mesoporous Materials, 2007, 106, 262-267.	4.4	23
257	An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 1674-1678.	0.3	23
258	Effect of deformation temperature on niobium clustering, precipitation and austenite recrystallisation in a Nb–Ti microalloyed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 16-25.	5.6	23
259	Full tip imaging in atom probe tomography. Ultramicroscopy, 2013, 124, 96-101.	1.9	23
260	On the microstructure and texture evolution in 17-4 PH stainless steel during laser powder bed fusion: Towards textural design. Journal of Materials Science and Technology, 2022, 117, 183-195.	10.7	23
261	Theory of solute clustering in materials for atom probe. Philosophical Magazine, 2011, 91, 2200-2215.	1.6	22
262	Atom Probe Tomography on Semiconductor Devices. Advanced Materials Interfaces, 2016, 3, 1500713.	3.7	22
263	Colossal Magnetization and Giant Coercivity in Ion-Implanted (Nb and Co) MoS ₂ Crystals. ACS Applied Materials & Interfaces, 2020, 12, 58140-58148.	8.0	22
264	Formation of a transition V-rich structure during the α' to αÂ+Âβ phase transformation process in additively manufactured Ti-6Al-4 V. Acta Materialia, 2022, 235, 118104.	7.9	22
265	Precipitation microstructure and age-hardening response of an Mg–Gd–Nd–Zn–Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 1-6.	5.6	21
266	The effect of clustering on the mobility of dislocations during aging in Nb-microalloyed strip cast steels: In situ heating TEM observations. Scripta Materialia, 2013, 69, 481-484.	5.2	21
267	On the universality of Suzuki segregation in binary Mg alloys from first principles. Journal of Alloys and Compounds, 2015, 620, 38-41.	5.5	21
268	Atom probe tomography of metallic nanostructures. MRS Bulletin, 2016, 41, 23-29.	3.5	21
269	Precipitation processes in Al-Cu-Mg-Sn and Al-Cu-Mg-Sn-Ag. Materials and Design, 2016, 96, 385-391.	7.0	21
270	On the rotation of precipitate particles. Acta Metallurgica Et Materialia, 1992, 40, 275-283.	1.8	20

#	Article	IF	CITATIONS
271	Vacancy-Solute Interactions in Al-Cu-Mg. Materials Science Forum, 2006, 519-521, 197-202.	0.3	20
272	Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids. Chemistry of Materials, 2011, 23, 2760-2765.	6.7	20
273	Insight into the deformation mechanisms of α-Fe at the nanoscale. Scripta Materialia, 2011, 65, 1037-1040.	5.2	20
274	What should the density of amorphous solids be?. Journal of Chemical Physics, 2019, 151, 194506.	3.0	20
275	Microalloying effects of Mo versus Cr in HSLA steels with ultrafine-grained ferrite microstructures. Materials and Design, 2020, 185, 108278.	7.0	20
276	High mobility in α-phosphorene isostructures with low deformation potential. Physical Chemistry Chemical Physics, 2020, 22, 2276-2282.	2.8	20
277	A novel method for practical temperature measurement with carbon nanotube nanothermometers. Nanotechnology, 2006, 17, 3681-3684.	2.6	19
278	High strength ultrafine/nanostructured aluminum produced by back pressure equal channel angular processing. Applied Physics Letters, 2007, 91, 031901.	3.3	19
279	Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning. Ultramicroscopy, 2015, 159, 314-323.	1.9	19
280	A nexus between 3D atomistic data hybrids derived from atom probe microscopy and computational materials science: A new analysis of solute clustering in Al-alloys. Scripta Materialia, 2017, 131, 93-97.	5.2	19
281	Grain size quantification by optical microscopy, electron backscatter diffraction, and magnetic force microscopy. Micron, 2017, 101, 41-47.	2.2	19
282	On the nexus between atom probe microscopy and density functional theory simulations. Materials Characterization, 2018, 146, 347-358.	4.4	19
283	Defects Engineering Induced Ultrahigh Magnetization in Rare Earth Element Ndâ€doped MoS ₂ . Advanced Quantum Technologies, 2021, 4, 2000093.	3.9	19
284	Nanocomposites of layered clays and cadmium sulfide: Similarities and differences in formation, structure and properties. Microporous and Mesoporous Materials, 2008, 108, 168-182.	4.4	18
285	An inverse analysis approach based on a POD direct model for the mechanical characterization of metallic materials. Computational Materials Science, 2014, 95, 302-308.	3.0	18
286	Atom probe tomography investigation of heterogeneous short-range ordering in the â€~komplex' phase state (K-state) of Fe–18Al (at.%). Intermetallics, 2015, 64, 23-31.	3.9	18
287	Merits of Pr80Ga20 grain boundary diffusion process towards high coercivity‒remanence synergy of Nd‒La‒Ce‒Fe‒B sintered magnet. Acta Materialia, 2022, 231, 117873.	7.9	18
288	Nucleation and growth of Î,′ precipitation in Sn-modified Alî—,Cu alloys: APFIM/TEM observations. Applied Surface Science, 1995, 87-88, 223-227.	6.1	17

#	Article	IF	CITATIONS
289	Effects of Cu on Precipitation in Al-Zn-Mg Alloys. Materials Science Forum, 2000, 331-337, 1055-1060.	0.3	17
290	Ultrahigh-strength submicron-sized metallic glass wires. Scripta Materialia, 2014, 84-85, 27-30.	5.2	17
291	Point-by-point compositional analysis for atom probe tomography. MethodsX, 2014, 1, 12-18.	1.6	17
292	Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method. Journal of Alloys and Compounds, 2015, 644, 900-905.	5.5	17
293	An initial report on achieving high comprehensive performance in an Al-Mg-Si alloy via novel thermomechanical processing. Journal of Alloys and Compounds, 2018, 764, 679-683.	5.5	17
294	Strainâ€Engineered Ultrahigh Mobility in Phosphorene for Terahertz Transistors. Advanced Electronic Materials, 2019, 5, 1800797.	5.1	17
295	Indentation and imprint mapping for the identification of material properties in multi-layered systems. Computational Materials Science, 2011, 50, 1681-1691.	3.0	16
296	Influence of the wavelength on the spatial resolution of pulsed-laser atom probe. Journal of Applied Physics, 2011, 110, .	2.5	16
297	Deformation-induced phase transformation in 4H–SiC nanopillars. Acta Materialia, 2014, 80, 392-399.	7.9	16
298	A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel. Materials Characterization, 2020, 170, 110693.	4.4	16
299	An observation of the binder microstructure in WC-(Co+Ru) cemented carbides using transmission Kikuchi diffraction. Scripta Materialia, 2020, 183, 55-60.	5.2	16
300	Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy. Scripta Materialia, 2022, 210, 114423.	5.2	16
301	Precipitation microstructure and their strengthening effects of an Mg–2.8Nd–0.6Zn–0.4Zr alloy with a 0.2 wt.% Y addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 272-280.	5.6	15
302	Overcoming challenges in the study of nitrided microalloyed steels using atom probe. Ultramicroscopy, 2012, 112, 32-38.	1.9	15
303	Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation. Philosophical Magazine, 2013, 93, 975-989.	1.6	15
304	Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction. Scripta Materialia, 2015, 101, 36-39.	5.2	15
305	In-situ synthesis of Ag nanoparticles by electron beam irradiation. Materials Characterization, 2015, 110, 1-4.	4.4	15
306	3D Atomic-Scale Insights into Anisotropic Core-Shell-Structured InGaAs Nanowires Grown by Metal-Organic Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1701888.	21.0	15

#	Article	IF	CITATIONS
307	Stress-induced reversible and irreversible ferroelectric domain switching. Applied Physics Letters, 2018, 112, .	3.3	15
308	Controlled synthesis and characterization of 10Ânm thick Al2O3 nanowires. Materials Letters, 2009, 63, 1016-1018.	2.6	14
309	Solute Diffusion Characteristics of a Rapid Hardening Al-Cu-Mg Alloy during the Early Stages of Age Hardening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1887-1890.	2.2	14
310	Multi-holed clay nanotubes and their modification with a polyaniline nanolayer. Journal of Materials Science, 2011, 46, 446-450.	3.7	14
311	Strain softening in nanocrystalline Ni–Fe alloy induced by large HPT revolutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4807-4811.	5.6	14
312	Microstructural and Texture Evolution of Strip Cast Nd–Fe–B Flake. Crystal Growth and Design, 2017, 17, 6550-6558.	3.0	14
313	On the retrieval of crystallographic information from atom probe microscopy data via signal mapping from the detector coordinate space. Ultramicroscopy, 2018, 189, 65-75.	1.9	14
314	Atomic scale insights into the segregation/partitioning behaviour in as-sintered multi-main-phase Nd-Ce-Fe-B permanent magnets. Journal of Alloys and Compounds, 2020, 846, 156248.	5.5	14
315	First-principles investigation of intrinsic point defects in perovskite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsSnBr</mml:mi><mml:mn>3Physical Review Materials, 2021, 5, .</mml:mn></mml:msub></mml:math 	nml2man> </td <td>mm14msub><</td>	mm14msub><
316	Giant room temperature compression and bending in ferroelectric oxide pillars. Nature Communications, 2022, 13, 335.	12.8	14
317	In situ formation of crystalline flakes in Mg-based metallic glass composites by controlled inoculation. Acta Materialia, 2011, 59, 7776-7786.	7.9	13
318	Field evaporation behavior in [0 0 1] FePt thin films. Ultramicroscopy, 2011, 111, 512-517.	1.9	13
319	Atom probe tomography of phosphorus- and boron-doped silicon nanocrystals with various compositions of silicon rich oxide. MRS Communications, 2016, 6, 283-288.	1.8	13
320	Defining the Potential of Nanoscale Reâ€Os Isotope Systematics Using Atom Probe Microscopy. Geostandards and Geoanalytical Research, 2018, 42, 279-299.	3.1	13
321	Negative Poisson's ratio in 2D life-boat structured crystals. Nanoscale Advances, 2019, 1, 1117-1123.	4.6	13
322	Effect of scanning strategy on variant selection in additively manufactured Ti-6Al-4V. Additive Manufacturing, 2020, 36, 101581.	3.0	13
323	Electrode-induced impurities in tin halide perovskite solar cell material CsSnBr3 from first principles. Npj Computational Materials, 2021, 7, .	8.7	13
324	Towards the correlation of fracture toughness in an ex-service power generating rotor. International Journal of Pressure Vessels and Piping, 2000, 77, 113-116.	2.6	12

#	Article	IF	CITATIONS
325	On the Role of Characterization in the Design of Interfaces in Nanoscale Materials Technology. Microscopy and Microanalysis, 2004, 10, 324-335.	0.4	12
326	Germanium-rich "starburst―cores in silica-based optical fibres fabricated by Modified Chemical Vapour Deposition. Optics Communications, 2004, 230, 45-53.	2.1	12
327	Effect of Trace Addition of Sn in Al-Cu Alloy. Materials Science Forum, 2006, 519-521, 203-208.	0.3	12
328	Evolution of Nanostructure during the Early Stages of Ageing in Al-Zn-Mg-Cu Alloys. Materials Science Forum, 2006, 519-521, 555-560.	0.3	12
329	Multiple solution-doping in optical fibre fabrication I – Aluminium doping. Journal of Non-Crystalline Solids, 2008, 354, 927-937.	3.1	12
330	On the understanding of the microscopic origin of the properties of diluted magnetic semiconductors by atom probe tomography. Journal of Magnetism and Magnetic Materials, 2009, 321, 935-943.	2.3	12
331	Effects of Si addition on the microstructure evolution of Al–Cu–Mg alloys in the α + S + T j Philosophical Magazine Letters, 2013, 93, 648-654.	phase field 1.2	·12
332	Distribution of boron and phosphorus and roles of co-doping in colloidal silicon nanocrystals. Acta Materialia, 2019, 178, 186-193.	7.9	12
333	Hydrogen-Anion-Induced Carrier Recombination in MAPbI ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 10677-10683.	4.6	12
334	Advanced structural analysis of a laser additive manufactured Zr-based bulk metallic glass along the build height. Journal of Materials Science, 2022, 57, 9678-9692.	3.7	12
335	Defect chemistry and electrical properties of La1â^'xSrxCoO3â^'δIII. Oxygen nonstoichiometry. Ionics, 2001, 7, 380-387.	2.4	11
336	Multiple solution-doping in optical fibre fabrication II – Rare-earth and aluminium co-doping. Journal of Non-Crystalline Solids, 2008, 354, 1582-1590.	3.1	11
337	Influence of oxygen partial pressure on the ferromagnetic properties of polycrystalline Cr-doped ZnO films. Europhysics Letters, 2008, 84, 27005.	2.0	11
338	Growth and Valence Excitations of ZnO:M(Al, In, Sn) Hierarchical Nanostructures. Journal of Physical Chemistry C, 2010, 114, 18031-18036.	3.1	11
339	Flame synthesis of carbon nanostructures on Ni-plated hardmetal substrates. Nanoscale Research Letters, 2011, 6, 331.	5.7	11
340	Analysis of dynamic segregation and crystallisation in Mg65Cu25Y10 bulk metallic glass using atom probe tomography. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 558-566.	5.6	11
341	Direct Observation of Dopants Distribution and Diffusion in GaAs Planar Nanowires with Atom Probe Tomography. ACS Applied Materials & Interfaces, 2016, 8, 26244-26250.	8.0	11
342	Kinetics of Domain Switching by Mechanical and Electrical Stimulation in Relaxor-Based Ferroelectrics. Physical Review Applied, 2017, 8, .	3.8	11

#	Article	IF	CITATIONS
343	Insights into the Silver Reflection Layer of a Vertical LED for Light Emission Optimization. ACS Applied Materials & Interfaces, 2017, 9, 24259-24272.	8.0	11
344	The role of graphite addition on spark plasma sintered titanium nitride. Journal of Materials Research and Technology, 2020, 9, 6268-6277.	5.8	11
345	Compositional variations in equiatomic CrMnFeCoNi high-entropy alloys. Materials Characterization, 2021, 180, 111437.	4.4	11
346	Defect chemistry and electrical properties of La1-xSrxCoO3-δ. Ionics, 2001, 7, 360-369.	2.4	10
347	Microscale Inhomogeneities in Aluminum Solution-Doping of Silica-Based Optical Fibers. Journal of the American Ceramic Society, 2007, 90, 23-28.	3.8	10
348	Rare-earth doped boron nitride nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 189-192.	3.5	10
349	Microscopic bonding mechanism of welding interface with molten Cu–4Zn deposited on solid-state steel. Materials Characterization, 2008, 59, 542-546.	4.4	10
350	Thermo-analysis of nanocrystalline TiO2 ceramics during the whole sintering process using differential scanning calorimetry. Ceramics International, 2010, 36, 827-829.	4.8	10
351	Calibrating the atomic balance by carbon nanoclusters. Applied Physics Letters, 2010, 96, .	3.3	10
352	Attraction of semiconductor nanowires: An in situ observation. Acta Materialia, 2013, 61, 7166-7172.	7.9	10
353	Atom probe tomography of sizeâ€controlled phosphorus doped silicon nanocrystals. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1600376.	2.4	10
354	Assessing the Spatial Accuracy of the Reconstruction in Atom Probe Tomography and a New Calibratable Adaptive Reconstruction. Microscopy and Microanalysis, 2019, 25, 309-319.	0.4	10
355	Strain-mediated bandgap engineering of straight and bent semiconductor nanowires. Physical Chemistry Chemical Physics, 2021, 23, 5407-5414.	2.8	10
356	3D characterization of microstructural evolution and variant selection in additively manufactured Ti-6Al-4ÂV. Journal of Materials Science, 2021, 56, 14763-14782.	3.7	10
357	Minimizing and Controlling Hydrogen for Highly Efficient Formamidinium Lead Triiodide Solar Cells. Journal of the American Chemical Society, 2022, 144, 6770-6778.	13.7	10
358	Intergranular precipitation and chemical fluctuations in an additively manufactured 2205 duplex stainless steel. Scripta Materialia, 2022, 219, 114894.	5.2	10
359	APFIM/TEM Observations of a High Strength-Creep Resistant Al-Cu-Mg-Si-Ge Alloy. Materials Science Forum, 1996, 217-222, 689-694.	0.3	9
360	Soft magnetic properties of Ge-doped nanocrystalline Fe–Zr–B alloys. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 441-443.	2.3	9

#	Article	IF	CITATIONS
361	Extracting anisotropy energy barrier distributions of nanomagnetic systems from magnetization/susceptibility measurements. Journal of Magnetism and Magnetic Materials, 2009, 321, L21-L27.	2.3	9
362	Chemistry of grain boundary environments in nanocrystalline Al 7075. Journal of Alloys and Compounds, 2010, 495, 391-393.	5.5	9
363	Atom probe analysis of clusters and precipitates in severely deformed and annealed interstitial free steel. Materials Science and Technology, 2011, 27, 735-738.	1.6	9
364	Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy. Scripta Materialia, 2011, 64, 323-326.	5.2	9
365	Atom probe microscopy characterization of as quenched Zr–0.8wt% Fe and Zr–0.15wt% Cr binary alloys. Materials Letters, 2013, 91, 63-66.	2.6	9
366	Correlating spatial, temporal and chemical information in atom probe data: new insights from multiple evaporation in microalloyed steels. Philosophical Magazine Letters, 2013, 93, 299-306.	1.2	9
367	Microstructural characterization and mechanical behaviours of TiN-graphite composites fabricated by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105253.	3.8	9
368	Quantitative analysis of Nb in solid solution in low carbon steels by atom probe tomography and inductively coupled plasma mass spectroscopy. Materials Characterization, 2021, 179, 111308.	4.4	9
369	Microstructure-property gradients in Ni-based superalloy (Inconel 738) additively manufactured via electron beam powder bed fusion. Additive Manufacturing, 2021, 46, 102121.	3.0	9
370	Evidence of in-situ Cu clustering as a function of laser power during laser powder bed fusion of 17–4 PH stainless steel. Scripta Materialia, 2022, 219, 114896.	5.2	9
371	Precipitation Processes in Al-4Cu-(Mg, Cd) (wt. %) Alloys. Materials Science Forum, 2002, 396-402, 613-618.	0.3	8
372	Microstructure and microchemistry variation during thermal exposure of low alloy steels. International Journal of Pressure Vessels and Piping, 2002, 79, 571-576.	2.6	8
373	Evidence for room temperature ferromagnetism in the In1â^'xCrxN system. Current Applied Physics, 2006, 6, 579-582.	2.4	8
374	Tomographic Reconstruction in Atom Probe Microscopy: Past, Present.Â.Â. Future?. Microscopy and Microanalysis, 2009, 15, 10-11.	0.4	8
375	Elemental redistribution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7500-7505.	5.6	8
376	Heterogeneous nucleation of β-type precipitates on nanoscale Zr-rich particles in a Mg-6Zn-0.5Cu-0.6Zr alloy. Nanoscale Research Letters, 2012, 7, 300.	5.7	8
377	Effect of solution treatment on precipitation and age-hardening response of an Al–4Mg–1Cu–0.5Si–0.4Ag (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 64-68.	5.6	8
378	On the morphology and crystallography of Hg5In2Te8 precipitation in Hg3In2Te6. Journal of Alloys and Compounds, 2014, 601, 298-306.	5.5	8

#	Article	IF	CITATIONS
379	Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation. Journal of Alloys and Compounds, 2015, 622, 206-212.	5.5	8
380	Si-induced precipitation modification and related age-hardening response of an Al–4Mg–1Cu–0.5Si alloy. Materials Chemistry and Physics, 2017, 193, 421-426.	4.0	8
381	Magnetic, electrochemical and thermoelectric properties of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mtext>P</mml:mtext><mml:mn>2</mml:mn><mml:mo>-</mml:mo><mm< td=""><td>l:msub><ı</td><td>mml:mrow><</td></mm<></mml:mrow></mmi:math 	l:msub><ı	mml:mrow><

#	Article	IF	CITATIONS
397	Defect chemistry and electrical properties of La1-xSrxCoO3-Î′. Ionics, 2001, 7, 370-379.	2.4	6
398	Defect chemistry and electrical properties of La1â^'xSrxCoO3â^'Î′ IV. Electrical properties. Ionics, 2001, 7, 388-393.	2.4	6
399	Microstructure of Alumina- and Alumina/Zirconia-Glass Infiltrated Dental Ceramics. Key Engineering Materials, 2003, 240-242, 879-882.	0.4	6
400	Novel Grain Boundary Solute Architecture in a Nanostructured Ultra-High Strength 7075 Aluminium Alloy. Materials Science Forum, 0, 618-619, 543-546.	0.3	6
401	Stress/Strain Induced Flux Pinning in Highly Dense \${m MgB}_{2}\$ Bulks. IEEE Transactions on Applied Superconductivity, 2009, 19, 2722-2725.	1.7	6
402	Preparation of dense nanostructured titania ceramic using two step sintering. Materials Technology, 2010, 25, 42-44.	3.0	6
403	Single Crystal Kinked ZnO [001] and [110] Nanowires: Synthesis, Characterization, and Growth/Kinking Mechanism. Crystal Growth and Design, 2012, 12, 3153-3157.	3.0	6
404	Methodology exploration of specimen preparation for atom probe tomography from nanowires. Ultramicroscopy, 2015, 159, 427-431.	1.9	6
405	Introducing a Crystallography-Mediated Reconstruction (CMR) Approach to Atom Probe Tomography. Microscopy and Microanalysis, 2019, 25, 288-300.	0.4	6
406	Quantifying the nucleation effect of correlated matrix grains in sintered Nd-Fe-B permanent magnets. Journal of Magnetism and Magnetic Materials, 2020, 498, 166099.	2.3	6
407	Solution Epitaxy of Halide Perovskite Thin Single Crystals for Stable Transistors. ACS Applied Materials & Interfaces, 2021, 13, 37840-37848.	8.0	6
408	Specimen Preparation. Springer Series in Materials Science, 2012, , 71-110.	0.6	6
409	Hydrogenâ€Induced Nonradiative Recombination in Allâ€Inorganic CsPbI ₃ Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	6
410	Temperature-dependent-composition of η phase in an Al-Zn-Mg-Cu alloy under high pressure torsion: Kinetics and thermodynamics. Acta Materialia, 2022, 237, 118181.	7.9	6
411	Effect of temper embrittlement and specimen size on Charpy impact testing of a Cr–Mo–V rotor steel. Materials Science and Technology, 2001, 17, 141-147.	1.6	5
412	The biocompatibility of diamond-like carbon nano films. , 2006, , .		5
413	Antiferromagnetic-coupling-induced magnetoresistance enhancement in Fex(TiO2)1â^'x films. Applied Physics Letters, 2006, 88, 232502.	3.3	5
414	Microstructural Evolution in Al-Sc and Al-Sc-Zr Alloys. Materials Science Forum, 2007, 546-549, 629-632.	0.3	5

#	Article	IF	CITATIONS
415	Light Output Improvement of Oxide-Textured InGaN-Based Light-Emitting Diodes by Bias-Assisted Photoelectrochemical Oxidation With Imprint Technique. IEEE Photonics Technology Letters, 2009, 21, 718-720.	2.5	5
416	Application of advanced analytical techniques to study structure–property relationship of hot rolled high strength low alloy steel. Materials Science and Technology, 2011, 27, 305-309.	1.6	5
417	Porous ZnO nanonetworks grown by molecular beam epitaxy. Journal Physics D: Applied Physics, 2012, 45, 135301.	2.8	5
418	Precipitation of quasicrystal approximant phases in an Al–Mg–Cu–Ge alloy. Philosophical Magazine Letters, 2013, 93, 77-84.	1.2	5
419	Spatial decomposition of molecular ions within 3D atom probe reconstructions. Ultramicroscopy, 2013, 132, 92-99.	1.9	5
420	Influence of experimental parameters on the composition of precipitates in metallic alloys. Ultramicroscopy, 2013, 132, 199-204.	1.9	5
421	Networking strategies of the microscopy community for improved utilisation of advanced instruments: (1) The Australian Microscopy and Microanalysis Research Facility (AMMRF). Comptes Rendus Physique, 2014, 15, 269-275.	0.9	5
422	Activity at the surface. Nature Materials, 2018, 17, 10-12.	27.5	5
423	Correlative study of lattice imperfections in long-range ordered, nano-scale domains in a Fe-Co-Mo alloy. Ultramicroscopy, 2019, 204, 91-100.	1.9	5
424	Influence of trace Zr on the microstructure and elevated temperature properties of an Al–Si–Cu–Ni–Mg piston alloy. Materials Research Express, 2019, 6, 056544.	1.6	5
425	Mechanical properties of ultrathin gold nanowires from first principles: Interdependencies between size, morphology, and twin boundaries. Physical Review Materials, 2020, 4, .	2.4	5
426	Effects of thermal annealing on the distribution of boron and phosphorus in p-i-n structured silicon nanocrystals embedded in silicon dioxide. Nanotechnology, 2022, 33, 075709.	2.6	5
427	Tracking Nanostructural Evolution in Alloys: Large-Scale Analysis of Atom Probe Tomography Data on Blue Gene/L. , 2008, , .		4
428	Creep Behavior of <l>ln-Situ</l> Formed AlN Reinforced Mg–5Al Nanocomposite at Low Temperatures and Low Stresses. Nanoscience and Nanotechnology Letters, 2009, 1, 204-207.	0.4	4
429	Annealing effects on the structural, magnetic and electrical properties of the nanocrystalline Fe ₃ O ₄ films. Journal Physics D: Applied Physics, 2009, 42, 215004.	2.8	4
430	Effects of Trace Cu Addition on the Microstructure and Tensile Properties of ZK60 Alloy. Materials Science Forum, 2010, 654-656, 655-658.	0.3	4
431	Quantification of graphene based core/shell quantum dots from first principles. Applied Physics Letters, 2011, 99, 183102.	3.3	4
432	Valence Excitations and Dopant Distribution of Al Doped ZnO Nanowires Analyzed by Electron Energy Loss Spectroscopy. Journal of Nanoscience and Nanotechnology, 2011, 11, 10182-10186.	0.9	4

#	Article	IF	CITATIONS
433	Precipitation and solute clustering in aluminium: advanced characterisation techniques. , 2011, , 345-366.		4
434	Preferential nucleation and growth of InAs/GaAs(001) quantum dots on defected sites by droplet epitaxy. Scripta Materialia, 2013, 69, 638-641.	5.2	4
435	Effect of Austenitising and Deformation Temperatures on Dynamic Recrystallisation in Nb-Ti Microalloyed Steel. Materials Science Forum, 2013, 753, 431-434.	0.3	4
436	Magnetotransport dependence on the field magnitude and direction in large area epitaxial graphene film on stretchable substrates. Applied Physics Letters, 2013, 102, .	3.3	4
437	Recent Developments in APT Analysis Automation and Support for User-Defined Custom Analysis Procedures in IVAS 4. Microscopy and Microanalysis, 2019, 25, 338-339.	0.4	4
438	Non-destructive analysis on nano-textured surface of the vertical LED for light enhancement. Ultramicroscopy, 2019, 196, 1-9.	1.9	4
439	Tomographic Reconstruction. Springer Series in Materials Science, 2012, , 157-209.	0.6	4
440	Deformation-induced medium-range order changes in bulk metallic glasses. Physical Review Materials, 2022, 6, .	2.4	4
441	New developments in the characterization of dislocation loops from LACBED patterns. Journal of Microscopy, 2006, 223, 246-248.	1.8	3
442	Characterization of Nano-Scale Particles in Hot-Rolled, High Strength Low Alloy Steels (HSLA). Materials Science Forum, 2007, 561-565, 2083-2086.	0.3	3
443	Positron lifetime evolution during room temperature ageing in Alâ€Znâ€Mgâ€(Cu). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2301-2303.	0.8	3
444	Can misfit dislocations be located above the interface of InAs/GaAs (001) epitaxial quantum dots?. Nanoscale Research Letters, 2012, 7, 486.	5.7	3
445	High Strength and Retained Ductility Achieved in a Nitrided Strip Cast Nb-Microalloyed Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 848-855.	2.2	3
446	Enhancement of the catalytic performance of a CNT supported Pt nanorod cluster catalyst by controlling their microstructure. RSC Advances, 2015, 5, 80176-80183.	3.6	3
447	Structural, optical, and electrical properties of silicon nanocrystals fabricated by high silicon content silicon-rich oxide and silicon dioxide bilayers. Applied Physics Express, 2016, 9, 115001.	2.4	3
448	Microscopic origin of highly enhanced supercurrent in 122 pnictide superconductor. Journal of Alloys and Compounds, 2018, 754, 1-6.	5.5	3
449	The role of vacancies in electric field mediated graphene oxide reduction. Applied Physics Letters, 2018, 113, .	3.3	3
450	3D microstructure analysis of silicon–boron phosphide mixed nanocrystals. Nanoscale, 2020, 12, 7256-7262.	5.6	3

#	Article	IF	CITATIONS
451	From Field Desorption Microscopy to Atom Probe Tomography. Springer Series in Materials Science, 2012, , 29-68.	0.6	3
452	Coercivity degradation caused by inhomogeneous grain boundaries in sintered Nd-Fe-B permanent magnets. Physical Review Materials, 2018, 2, .	2.4	3
453	Advanced quantification of the site-occupancy in ordered multi-component intermetallics using atom probe tomography. Intermetallics, 2022, 145, 107538.	3.9	3
454	Hardening and Defect Structures in Thermomechanically Processed Al-2.5Cu-1.5Mg (wt.%) Alloy. Materials Science Forum, 2000, 331-337, 1077-1082.	0.3	2
455	Properties of TiO2 as photoelectrode for hydrogen generation using solar energy. lonics, 2001, 7, 272-274.	2.4	2
456	Characteristics of î·' and î· ₄ Precipitates in Ag-Modified Al-Zn-Mg Alloys. Materials Science Forum, 2002, 396-402, 631-636.	0.3	2
457	Nanobeam electron diffraction and high resolution imaging analysis of InN films grown on sapphire. Microscopy Research and Technique, 2007, 70, 205-210.	2.2	2
458	Novel Surfactant Free and Solid State Polymerization to Dendritic Polyaniline Nanofibers. Advanced Materials Research, 2008, 47-50, 638-641.	0.3	2
459	Direct synthesis and strong cathodoluminescence of Al2O3 nanotubes. Materials Chemistry and Physics, 2010, 120, 240-243.	4.0	2
460	Grain Size Effect on Deformation Twinning and De-Twinning in a Nanocrystalline Ni-Fe Alloy. Materials Science Forum, 2010, 667-669, 181-186.	0.3	2
461	Nitriding of a Nb-Microalloyed Thin Strip Cast Steel at 525°C. Materials Science Forum, 0, 654-656, 106-109.	0.3	2
462	A Tool for Scientific Provenance of Data and Software. , 2013, , .		2
463	An Overview of the Effect of Nb in Strengthening Castrip [®] Steel. Materials Science Forum, 2013, 753, 559-562.	0.3	2
464	Effect of Cyclic Thermal Loadings on the Microstructural Evolution of a Cantor Alloy in 3D Printing Processes. Microscopy and Microanalysis, 2019, 25, 2568-2569.	0.4	2
465	Intragranular glass/crystal conjugated particles in strip cast Nd-Fe-B flakes. Journal of Magnetism and Magnetic Materials, 2020, 495, 165863.	2.3	2
466	Ultrahigh transverse rupture strength in tungsten-based nanocomposites with minimal lattice misfit and dual microstructure. International Journal of Refractory Metals and Hard Materials, 2021, 95, 105454.	3.8	2
467	Manipulating ferroelectric behaviors via electron-beam induced crystalline defects. Nanoscale, 2021, 13, 14330-14336.	5.6	2
468	A Crystallography-Mediated Reconstruction (CMR) Approach for Atom Probe Tomography: Solution for a Singleton Pole. Ultramicroscopy, 2021, 224, 113262.	1.9	2

#	Article	IF	CITATIONS
469	Experimental Protocols in Atom Probe Tomography. Springer Series in Materials Science, 2012, , 121-155.	0.6	2
470	Atom Probe Microscopy and Materials Science. Springer Series in Materials Science, 2012, , 299-311.	0.6	2
471	Atom probe specimen preparation methods for nanoparticles. Ultramicroscopy, 2022, 233, 113420.	1.9	2
472	Microstructure and properties of CoCrFeNi-based multi-principal element alloys containing C and Sc. Journal of Materials Science, 2022, 57, 9442-9453.	3.7	2
473	Determination of Al compositional profiles across AlAs/GaAs heterostructural interface at sub-nanometer spatial resolution by thickness fringe imaging. Scripta Materialia, 2002, 47, 279-283.	5.2	1
474	Relationship between Microstructure and Texture Development during the Early Stages of Annealing in Warm Rolled Low Carbon Steels. Materials Science Forum, 2005, 500-501, 795-802.	0.3	1
475	Preparation of Site Specific Atom Probe Tips using Focused Ion Beam Technology. Microscopy and Microanalysis, 2006, 12, 1296-1297.	0.4	1
476	Introduction: Special Issue on Atom Probe Tomography. Microscopy and Microanalysis, 2007, 13, 407-407.	0.4	1
477	Alternating current bias-assisted photoenhanced oxidation of n-GaN in dionized water. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	1
478	Raman Spectroscopy: Alternate Method for Strain and Carbon Substitution Study in \${m MgB}_{2}\$. IEEE Transactions on Applied Superconductivity, 2011, 21, 2623-2626.	1.7	1
479	Microstructural properties of over-doped GaN-based diluted magnetic semiconductors grown by MOCVD. Journal of Semiconductors, 2012, 33, 073002.	3.7	1
480	Local electron tomography using angular variations of surface tangents: Stomo version 2. Computer Physics Communications, 2012, 183, 698-704.	7.5	1
481	Quantitative Determination of How Growth Conditions Affect the 3D Composition of InGaAs Nanowires. Microscopy and Microanalysis, 2019, 25, 524-531.	0.4	1
482	Atom Probe Analysis of a Zr-based Bulk Metallic Glass. Microscopy and Microanalysis, 2022, 28, 1348-1358.	0.4	1
483	Field Ion Microscopy. Springer Series in Materials Science, 2012, , 9-28.	0.6	1
484	Vacancy-Solute Interactions in Al-Cu-Mg. Materials Science Forum, 0, , 197-202.	0.3	1
485	Erratum to "Nucleation and growth of Î,′ precipitation in Sn-modified Alî—,Cu alloys: APFIM/TEM observations―[Appl. Surf. Sci. 87/88 (1995) 223]. Applied Surface Science, 1995, 90, 107.	6.1	0
486	Observations of the Effect of Zn on Precipitation Processes in an Al-Cu-Mg-Ag Base Alloy. Materials Science Forum, 2000, 331-337, 977-982.	0.3	0

9177 Statistical Tools for the Local Electrode Atom Probe. Microscopy and Microanalysis, 2006, 12, 536-537. 0.4 0 9188 Ageing Characteristics and Microaraturutural Evolution In Microalloyed AI Alloys. Materials Science 0.3 0 9199 Instructure No.0-MIRF: A modern Australian research facility for microscopy to the name checked. Microscopy Research and Technique, 2007, 70, 179-1800. 2.7 0 9190 High-resolution TEM study of the Er distribution in Er-doped SiO2 films prepared by laser ablation. 2.7 0 9191 Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments. 0.3 0 9192 Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments. 0.3 0 9193 Invitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479. 2.2 0 9194 Invitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479. 0.3 0 9195 Addethoid to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2003 0.3 0 9194 Invitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479. 0.2 0 9105 Characterisation of an ultra-thin multilayer structure for spintronic mate	#	Article	IF	CITATIONS
4888 Ageing Characteristics and Microstructural Evolution in Microalloyed Al Alloys. Materials Science 0.3 0 4999 Introduction to NNO-MNRF; A modern Australian research facility for microscopy to the innonecter level. Microscopy Assearch and Technique, 2007, 70, 179 180. 2.2 0 4909 High-resolution TEM study of the Er distribution in Er-doped SIO2 films prepared by laser ablation. 2.7 0 491 Devsenstüzed solar cells based on indum-tin oxide nanowires coated with titania layers. 2009, 0 0 492 Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments. 0.3 0 493 Invoto studies of cells grown on the superconductor PrOxFeAs. Micros, 2009, 40, 476-479. 2.2 0 494 Okanoted field Science Forum, 2009, 618-619, 215-218. 0 0 495 Autchold to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2003 0 0 496 Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, . 0 0 497 The Benefit and Impact of On-Line Tools for Microscopy and	487	Statistical Tools for the Local Electrode Atom Probe. Microscopy and Microanalysis, 2006, 12, 536-537.	0.4	0
4490Introduction to NANO-MNRF: A modern Australian research facility for microscopy to the nanometer-level. Microscopy Research and Technique, 2007, 79, 179-180.2.20490High-resolution TEM study of the Er distribution in Er-doped SIO2 films prepared by laser ablation. Physica B: Condensed Matter, 2007, 394, 270-272.0491Dyesenstitzed solar cells based on indum-tin oxide nanowires coated with titania layers, 2008,0492Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments. Materials Science Forum, 2009, 618-619, 215-218.0.30493Corrosion of a New Class of Solid Solution Al Alloys. ECS Transactions, 2009, 16, 73-80.0.50494In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.20495Characterisation of an ultra-thin multilayer structure for spintronic materials. 2010,00496Characterisation of an ultra-thin multilayer structure for spintronic materials. 2010,0.40497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Microscopy (Mord, English, 2015, 215, 218, 2159.0.40498B22-OOSHave a Cood TRIP. Atom Probe Investigations on Ultrafine Austeriate In Strong Steels.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microscopy (Mord, English, 2019, 25, 332-333.0.40499Interpreting the Simplified Multicomanalysis, 2019, 25, 268-2639.0.40490Graded Microscopy and Microanalysis, 2019, 25, 268-2639. <td>488</td> <td>Ageing Characteristics and Microstructural Evolution in Microalloyed Al Alloys. Materials Science Forum, 2007, 539-543, 438-445.</td> <td>0.3</td> <td>0</td>	488	Ageing Characteristics and Microstructural Evolution in Microalloyed Al Alloys. Materials Science Forum, 2007, 539-543, 438-445.	0.3	0
1900High-resolution TEM study of the Er distribution in Er-doped SIO2 films prepared by laser ablation.2.701911Dye-sensitized solar cells based on indium tin oxide nanewires coated with titania layers., 2008,01912Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments.0.301913Corrosion of a New Class of Solid Solution Al Alloys. ECS Transactions, 2009, 16, 73-80.0.501914In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.201915AMethod to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum,0.301916Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, 654-656, 2775-2778.001917The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Microscopy (Oxford, England), 2015, 64, 149, 149.001918B22-0-05Have a Cood TEIP. Atom Probe Investigations on Ultrafine Austenite in Strong Steels.1.501919Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and0.401920Graded Microanalysis, 2019, 25, 332-333.001931Graded Microanalysis, 2019, 25, 498-499.0.401932Stanslass, 2019, 25, 498-499.0.401933Graded Microanalysis, 2019, 25, 498-499.0.401944Betrostructure of Thermo-Mechanical Instabilities in Translent Additive Manufacturing of Ni-based0.41943 <t< td=""><td>489</td><td>Introduction to NANO-MNRF: A modern Australian research facility for microscopy to the nanometer-level. Microscopy Research and Technique, 2007, 70, 179-180.</td><td>2.2</td><td>0</td></t<>	489	Introduction to NANO-MNRF: A modern Australian research facility for microscopy to the nanometer-level. Microscopy Research and Technique, 2007, 70, 179-180.	2.2	0
491Dye-sensitized solar cells based on indium-tin oxide nanowires coated with titania layers., 2008,,0492Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments.0.30493Corrosion of a New Class of Solid Solution AI Alloys. ECS Transactions, 2009, 16, 73-80.0.50494In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.20495AMethod to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum,0.30496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010,00497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis, 7014, 20, 2156 2153.0.40498B22-OOSHawe a Cood TRIP-Atom Probe Investigations on Ultrafine Austenite in Strong Steels.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and0.40490Graded Microanalysis, 2019, 25, 322-333.0.40491Strionalization of Thermo Mechanical Instabilities in Transient Additive Manufacturing of Ni-based0.40492Retronalogistic, 2019, 25, 498-499.0.40493Strionalization of Thermo Mechanical Instabilities in Transient Additive Manufacturing of Ni-based0.40494Retronalogistic, String Streaks, Streaks, String Streaks, Stri	490	High-resolution TEM study of the Er distribution in Er-doped SiO2 films prepared by laser ablation. Physica B: Condensed Matter, 2007, 394, 270-272.	2.7	0
492Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments.0.30493Corrosion of a New Class of Solid Solution Al Alloys. ECS Transactions, 2009, 16, 73-80.0.50494In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.20495A Method to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2010, 654-656, 2775-2778.0.30496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, .00497The Benefit and Impact of On-Line Tools for Microacopy and Microanalysis Training and Education in Microacopy and Microanalysis, 2014, 20, 2154-2159.0.40498B22-O-05Have a Good TRIP. Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microacopy (Microanalysis, 2019, 25, 332-333.0.40499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and 	491	Dye-sensitized solar cells based on indium-tin oxide nanowires coated with titania layers. , 2008, , .		0
493Corrosion of a New Class of Solid Solution Al Alloys, ECS Transactions, 2009, 16, 73-80.0.50494In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.20495A Method to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2010, 654-656, 2775-2778.0.30496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, .00497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities Microscopy and Microanalysis, 2014, 20, 2158-2159.0.40498B22-0-05Have a Good TRIP. Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, 149.149.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR), Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40	492	Mechanical Characterisation of Material Properties Using Instrumented Indentation Experiments. Materials Science Forum, 2009, 618-619, 215-218.	0.3	0
494In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.2.20495A Method to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2010, 654-656, 2775-2278.0.30496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, .0497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities. Microscopy and Microanalysis, 2014, 20, 2158-2159.0.40498B22-0-05Have a Good TRIP. Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, 149.1-149.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and 	493	Corrosion of a New Class of Solid Solution Al Alloys. ECS Transactions, 2009, 16, 73-80.	0.5	0
495A Method to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2010, 654-656, 2775-2778.0.30496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010, , .0497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities Microscopy and Microanalysis, 2014, 20, 2158-2159.0.40498B22-O-O5Have a Good TRIP: Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, 149.149.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6AI-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	494	In vitro studies of cells grown on the superconductor PrOxFeAs. Micron, 2009, 40, 476-479.	2.2	0
496Characterisation of an ultra-thin multilayer structure for spintronic materials., 2010,o497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities Microscopy and Microanalysis, 2014, 20, 2158-2159.0.40498B22-O-05Have a Good TRIP: Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, 149.1-149.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6AI-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	495	A Method to Extract Materials Properties from Multilayer Material Systems. Materials Science Forum, 2010, 654-656, 2775-2778.	0.3	0
497The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities. Microscopy and Microanalysis, 2014, 20, 2158-2159.0.40498B22-O-05Have a Cood TRIP: Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, i49.1-i49.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6AI-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	496	Characterisation of an ultra-thin multilayer structure for spintronic materials. , 2010, , .		0
498B22-O-O5 Have a Good TRIP: Atom Probe Investigations on Ultrafine Austenite in Strong Steels.1.50499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6AI-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	497	The Benefit and Impact of On-Line Tools for Microscopy and Microanalysis Training and Education in Core Facilities Microscopy and Microanalysis, 2014, 20, 2158-2159.	0.4	0
499Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.0.40500Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	498	B22-O-05Have a Good TRIP: Atom Probe Investigations on Ultrafine Austenite in Strong Steels. Microscopy (Oxford, England), 2015, 64, i49.1-i49.	1.5	0
500Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.0.40501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	499	Interpreting the Simplified Multicomponent Short-Range Order Parameter. Microscopy and Microanalysis, 2019, 25, 332-333.	0.4	0
501Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.0.40502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	500	Graded Microstructure of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Microscopy and Microanalysis, 2019, 25, 498-499.	0.4	0
502Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated0.40502Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.0.40	501	Rationalization of Thermo-Mechanical Instabilities in Transient Additive Manufacturing of Ni-based Superalloys. Microscopy and Microanalysis, 2019, 25, 2638-2639.	0.4	0
	502	Improving Spatial Accuracy in Atom Probe Tomography through a Crystallography-Mediated Reconstruction (CMR). Microscopy and Microanalysis, 2019, 25, 292-293.	0.4	0
503 Inside Front Cover: Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles (Small) Tj ETQq1 1 0.784314 rgBT /Overld	503	Inside Front Cover: Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles (Small) Tj ETQq1 1 C).784314 ı 8.6	rgBT /Overloc

504 Development of ASAT as a Concept. , 2022, , 40-52.

#	Article	IF	CITATIONS
505	Instrumentation for ASAT. , 2022, , 98-124.		0
506	The Nexus between ASAT and Density Functional Theory. , 2022, , 201-221.		0
507	Implications, Applications, and the Future of ASAT. , 2022, , 222-235.		0
508	Practical ASAT. , 2022, , 125-144.		0
509	How ASAT Might Be Achieved. , 2022, , 77-97.		0
510	Experimental Metrics for ASAT. , 2022, , 160-198.		0
511	History of Atomic-Scale Microscopy. , 2022, , 11-39.		0
512	The Need for ASAT. , 2022, , 3-10.		0
513	Has ASAT Been Achieved?. , 2022, , 55-76.		0
514	Toward Real-Space Crystallography. , 2022, , 145-159.		0