David Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3141003/publications.pdf Version: 2024-02-01

DAVID REDNADD

#	Article	IF	CITATIONS
1	Evidence That SARS-CoV-2 Induces Lung Cell Senescence: Potential Impact on COVID-19 Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 107-111.	2.9	14
2	TRPC3 shapes the ER-mitochondria Ca2+ transfer characterizing tumour-promoting senescence. Nature Communications, 2022, 13, 956.	12.8	29
3	<scp>NFâ€₽B</scp> â€dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast cancer cells. Aging Cell, 2022, 21, .	6.7	6
4	Editor's Note: Immortalization of Primary Human Prostate Epithelial Cells by c-Myc. Cancer Research, 2022, 82, 2656-2656.	0.9	0
5	Hepatic Stellate Cell Senescence in Liver Tumorigenesis. Hepatology, 2021, 73, 853-855.	7.3	4
6	Calcium channel ITPR2 and mitochondria–ER contacts promote cellular senescence and aging. Nature Communications, 2021, 12, 720.	12.8	75
7	PLA2R1 promotes DNA damage and inhibits spontaneous tumor formation during aging. Cell Death and Disease, 2021, 12, 190.	6.3	10
8	Loss of the Metastasis Suppressor NME1, But Not of Its Highly Related Isoform NME2, Induces a Hybrid Epithelial–Mesenchymal State in Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 3718.	4.1	5
9	Elimination of Senescent Endothelial Cells: Good or Bad Idea?. Trends in Cell Biology, 2021, 31, 327-330.	7.9	9
10	Phospholipase A2 receptor 1 promotes lung cell senescence and emphysema in obstructive lung disease. European Respiratory Journal, 2021, 58, 2000752.	6.7	11
11	Cellular senescence links mitochondria-ER contacts and aging. Communications Biology, 2021, 4, 1323.	4.4	24
12	Generation of a conditional transgenic mouse model expressing human Phospholipase A2 Receptor 1. Scientific Reports, 2020, 10, 8190.	3.3	10
13	The JAK1/2 inhibitor ruxolitinib delays premature aging phenotypes. Aging Cell, 2020, 19, e13122.	6.7	41
14	Cardiac Glycosides as Senolytic Compounds. Trends in Molecular Medicine, 2020, 26, 243-245.	6.7	8
15	Regulation of cellular senescence by retinoid X receptors and their partners. Mechanisms of Ageing and Development, 2019, 183, 111131.	4.6	10
16	The STATus of STAT3 in Lung Cell Senescence?. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 5-6.	2.9	7
17	Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors. Nucleic Acids Research, 2019, 47, 3407-3421.	14.5	10
18	The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight, 2019, 4, .	5.0	38

DAVID BERNARD

#	Article	IF	CITATIONS
19	The <scp>SCN</scp> 9A channel and plasma membrane depolarization promote cellular senescence through Rb pathway. Aging Cell, 2018, 17, e12736.	6.7	20
20	Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death and Disease, 2018, 9, 259.	6.3	43
21	Calcium signaling and cellular senescence. Cell Calcium, 2018, 70, 16-23.	2.4	93
22	mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight, 2018, 3, .	5.0	142
23	The nuclear receptor RXRA controls cellular senescence by regulating calcium signaling. Aging Cell, 2018, 17, e12831.	6.7	45
24	Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell, 2018, 17, e12835.	6.7	31
25	Instructive power of senescence. Nature Reviews Molecular Cell Biology, 2018, 19, 618-618.	37.0	3
26	Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nature Communications, 2017, 8, 14995.	12.8	131
27	The PLA2R1-JAK2 pathway upregulates ERRα and its mitochondrial program to exert tumor-suppressive action. Oncogene, 2016, 35, 5033-5042.	5.9	19
28	Multidrug resistance protein 3 loss promotes tumor formation by inducing senescence escape. Oncogene, 2016, 35, 1596-1601.	5.9	5
29	Lysyl oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma to chemotherapy by limiting the intratumoral anticancer drug distribution. Oncotarget, 2016, 7, 32100-32112.	1.8	59
30	Screening of a kinase library reveals novel pro-senescence kinases and their common NF-κB-dependent transcriptional program. Aging, 2015, 7, 986-999.	3.1	36
31	Transport and senescence. Oncoscience, 2015, 2, 741-742.	2.2	2
32	Glucose metabolism and hexosamine pathway regulate oncogene-induced senescence. Cell Death and Disease, 2014, 5, e1089-e1089.	6.3	35
33	Quantification of <i>β</i> â€aminopropionitrile, an inhibitor of lysyl oxidase activity, in plasma and tumor of mice by liquid chromatography tandem mass spectrometry. Biomedical Chromatography, 2014, 28, 1017-1023.	1.7	8
34	Humanization of the mouse mammary gland by replacement of the luminal layer with genetically-engineered preneoplastic human cells. Breast Cancer Research, 2014, 16, 504.	5.0	13
35	PLA2R1: Expression and function in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 40-44.	7.4	43
36	MUC1 drives epithelial–mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Letters, 2014, 346, 225-236.	7.2	77

DAVID BERNARD

#	Article	IF	CITATIONS
37	Endoplasmic reticulum calcium release through ITPR2 channels leads to mitochondrial calcium accumulation and senescence. Nature Communications, 2014, 5, 3792.	12.8	154
38	Repression of PLA2R1 by c-MYC and HIF-2alpha promotes cancer growth. Oncotarget, 2014, 5, 1004-1013.	1.8	33
39	Caspase-2 regulates oncogene-induced senescence. Oncotarget, 2014, 5, 5845-5847.	1.8	10
40	Potassium Channel KCNA1 Modulates Oncogene-Induced Senescence and Transformation. Cancer Research, 2013, 73, 5253-5265.	0.9	61
41	PLA2R1 kills cancer cells by inducing mitochondrial stress. Free Radical Biology and Medicine, 2013, 65, 969-977.	2.9	33
42	PLA2R1 Mediates Tumor Suppression by Activating JAK2. Cancer Research, 2013, 73, 6334-6345.	0.9	60
43	Lysyl oxidase activity regulates oncogenic stress response and tumorigenesis. Cell Death and Disease, 2013, 4, e855-e855.	6.3	22
44	Platelet-derived growth factor B induces senescence and transformation in normal human fibroblasts. Aging, 2013, 5, 531-538.	3.1	4
45	Regulation of ploidy and senescence by the AMPK-related kinase NUAK1. EMBO Journal, 2010, 29, 376-386.	7.8	88
46	MnSOD Upregulation Induces Autophagic Programmed Cell Death in Senescent Keratinocytes. PLoS ONE, 2010, 5, e12712.	2.5	48
47	NUAK1 links genomic instability and senescence. Aging, 2010, 2, 317-319.	3.1	3
48	A Genetic Screen Identifies Topoisomerase 1 as a Regulator of Senescence. Cancer Research, 2009, 69, 4101-4106.	0.9	15
49	MUC1, a New Hypoxia Inducible Factor Target Gene, Is an Actor in Clear Renal Cell Carcinoma Tumor Progression. Cancer Research, 2009, 69, 5707-5715.	0.9	97
50	The Mâ€ŧype receptor PLA2R regulates senescence through the p53 pathway. EMBO Reports, 2009, 10, 271-277.	4.5	121
51	Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence. Cell, 2008, 133, 1006-1018.	28.9	1,446
52	A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxidants and Redox Signaling, 2007, 9, 293-299.	5.4	302
53	Normal or stress-induced fibroblast senescence involves COX-2 activity. Experimental Cell Research, 2007, 313, 3046-3056.	2.6	57
54	Protection from oxidative stress by enhanced glycolysis; a possible mechanism of cellular immortalization. Histology and Histopathology, 2007, 22, 85-90.	0.7	119

DAVID BERNARD

#	Article	IF	CITATIONS
55	The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006, 439, 871-874.	27.8	1,964
56	The methyl-CpG-binding protein MECP2 is required for prostate cancer cell growth. Oncogene, 2006, 25, 1358-1366.	5.9	54
57	Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO Journal, 2005, 24, 336-346.	7.8	375
58	CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene, 2005, 24, 5543-5551.	5.9	147
59	Immortalization of Primary Human Prostate Epithelial Cells by c-Myc. Cancer Research, 2005, 65, 2179-2185.	0.9	112
60	Role of Polycomb Group Proteins in Stem Cell Self-Renewal and Cancer. DNA and Cell Biology, 2005, 24, 117-125.	1.9	146
61	Involvement of Rel/Nuclear Factor-κB Transcription Factors in Keratinocyte Senescence. Cancer Research, 2004, 64, 472-481.	0.9	97
62	Polycomb CBX7 has a unifying role in cellular lifespan. Nature Cell Biology, 2004, 6, 67-72.	10.3	311
63	Myc confers androgen-independent prostate cancer cell growth. Journal of Clinical Investigation, 2003, 112, 1724-1731.	8.2	101
64	Myc confers androgen-independent prostate cancer cell growth. Journal of Clinical Investigation, 2003, 112, 1724-1731.	8.2	174
65	Normal Breast Epithelial Cells Induce Apoptosis of Breast Cancer Cells via Fas Signaling. Experimental Cell Research, 2002, 275, 31-43.	2.6	36
66	The c-Rel transcription factor can both induce and inhibit apoptosis in the same cells via the upregulation of MnSOD. Oncogene, 2002, 21, 4392-4402.	5.9	67
67	cRel induces mitochondrial alterations in correlation with proliferation arrest. Free Radical Biology and Medicine, 2001, 31, 943-953.	2.9	18
68	Rel/NF-κB Transcription Factors Protect against Tumor Necrosis Factor (TNF)-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis by Up-regulating the TRAIL Decoy Receptor DcR1. Journal of Biological Chemistry, 2001, 276, 27322-27328.	3.4	107
69	Antiproliferative and antiapoptotic effects of crel may occur within the same cells via the up-regulation of manganese superoxide dismutase. Cancer Research, 2001, 61, 2656-64.	0.9	65
70	The transcription factor C-rel blocks proliferation and protects from TNF α-induced apoptosis via the up-regulation of the same target: The manganese superoxide dismutase. Biology of the Cell, 1999, 91, 557-557a.	2.0	0
71	Lysyl oxidases: emerging promoters of senescence escape, tumor initiation and progression. Cancer Cell & Microenvironment, 0, , .	0.8	0