Jose Perdomo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Erythrocyte interaction with neutrophil extracellular traps in coronary artery thrombosis following myocardial infarction. Pathology, 2021, , .	0.6	8
2	Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia. Blood Advances, 2021, 5, 5439-5451.	5.2	16
3	Platelet derived growth factor-A (Pdgf-a) gene transfer modulates scar composition and improves left ventricular function after myocardial infarction. International Journal of Cardiology, 2021, 341, 24-30.	1.7	12
4	Indirect detection of anti-platelet antibodies in immune thrombocytopenia. Pathology, 2021, 53, 759-762.	0.6	2
5	Untying knots to make more platelets. Blood, 2020, 136, 1702-1703.	1.4	0
6	Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nature Communications, 2019, 10, 1322.	12.8	277
7	Drug-induced immune thrombocytopenia: Mapping of the drug binding site to the membrane-proximal region of platelet GPIX. Platelets, 2019, 30, 251-255.	2.3	2
8	Megakaryocyte Differentiation and Platelet Formation from Human Cord Blood-derived CD34 ⁺ Cells. Journal of Visualized Experiments, 2017, , .	0.3	14
9	Role of romiplostim in splenectomized and nonsplenectomized patients with immune thrombocytopenia. ImmunoTargets and Therapy, 2016, 5, 1.	5.8	2
10	Immune thrombocytopenia: antiplatelet autoantibodies inhibit proplatelet formation by megakaryocytes and impair platelet production in vitro. Haematologica, 2015, 100, 623-632.	3.5	84
11	Art27 Interacts with GATA4, FOG2 and NKX2.5 and Is a Novel Co-Repressor of Cardiac Genes. PLoS ONE, 2014, 9, e95253.	2.5	17
12	Drug-induced Immune Thrombocytopenia. Hematology/Oncology Clinics of North America, 2013, 27, 521-540.	2.2	27
13	A megakaryocyte with no platelets: Anti-platelet antibodies, apoptosis, and platelet production. Platelets, 2013, 24, 98-106.	2.3	21
14	The CACCC-Binding Protein KLF3/BKLF Represses a Subset of KLF1/EKLF Target Genes and Is Required for Proper Erythroid Maturation <i>In Vivo</i> . Molecular and Cellular Biology, 2012, 32, 3281-3292.	2.3	37
15	SUMOylation Regulates the Transcriptional Repression Activity of FOG-2 and Its Association with GATA-4. PLoS ONE, 2012, 7, e50637.	2.5	10
16	Quinine-induced thrombocytopenia: drug-dependent GPIb/IX antibodies inhibit megakaryocyte and proplatelet production in vitro. Blood, 2011, 117, 5975-5986.	1.4	31
17	A monopartite sequence is essential for p45 NF-E2 nuclear translocation, transcriptional activity and platelet production. Journal of Thrombosis and Haemostasis, 2010, 8, 2542-2553.	3.8	10
18	Identification of a monopartite sequence in PU.1 essential for nuclear import, DNA-binding and transcription of myeloid-specific genes. Journal of Cellular Biochemistry, 2007, 101, 1456-1474.	2.6	8

Jose Perdomo

#	Article	IF	CITATIONS
19	CtBP and Hematopoietic Transcriptional Regulators. , 2007, , 28-38.		0
20	Role of the C-Terminal Binding Protein PXDLS Motif Binding Cleft in Protein Interactions and Transcriptional Repression. Molecular and Cellular Biology, 2006, 26, 8202-8213.	2.3	53
21	Role for SUMO Modification in Facilitating Transcriptional Repression by BKLF. Molecular and Cellular Biology, 2005, 25, 1549-1559.	2.3	79
22	Structural Studies on a Protein-Binding Zinc-Finger Domain of Eos Reveal Both Similarities and Differences to Classical Zinc Fingersâ€. Biochemistry, 2004, 43, 13318-13327.	2.5	11
23	Modification with SUMO. EMBO Reports, 2003, 4, 137-142.	4.5	401
24	The C-terminal Domain of Eos Forms a High Order Complex in Solution. Journal of Biological Chemistry, 2003, 278, 42419-42426.	3.4	11
25	The Ikaros family protein Eos associates with C-terminal-binding protein corepressors. FEBS Journal, 2002, 269, 5885-5892.	0.2	21
26	Eos and Pegasus, Two Members of the Ikaros Family of Proteins with Distinct DNA Binding Activities. Journal of Biological Chemistry, 2000, 275, 38347-38354.	3.4	101