Sheng Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3139069/publications.pdf

Version: 2024-02-01

298 papers 15,549 citations

62 h-index 21539 114 g-index

302 all docs 302 docs citations

302 times ranked 16691 citing authors

#	Article	IF	CITATIONS
1	Experimental realization of two-dimensional boron sheets. Nature Chemistry, 2016, 8, 563-568.	13.6	1,398
2	Evidence of Silicene in Honeycomb Structures of Silicon on Ag(111). Nano Letters, 2012, 12, 3507-3511.	9.1	1,190
3	Evidence for Dirac Fermions in a Honeycomb Lattice Based on Silicon. Physical Review Letters, 2012, 109, 056804.	7.8	634
4	Water adsorption on metal surfaces: A general picture from density functional theory studies. Physical Review B, 2004, 69, .	3.2	448
5	Graphene NanoFlakes with Large Spin. Nano Letters, 2008, 8, 241-245.	9.1	443
6	Adsorption and Diffusion of Lithium on Layered Silicon for Li-Ion Storage. Nano Letters, 2013, 13, 2258-2263.	9.1	377
7	Dirac Fermions in Borophene. Physical Review Letters, 2017, 118, 096401.	7.8	353
8	Topological Frustration in Graphene Nanoflakes: Magnetic Order and Spin Logic Devices. Physical Review Letters, 2009, 102, 157201.	7.8	237
9	Vibrational Recognition of Hydrogen-Bonded Water Networks on a Metal Surface. Physical Review Letters, 2002, 89, 176104.	7.8	229
10	Spontaneous Symmetry Breaking and Dynamic Phase Transition in Monolayer Silicene. Physical Review Letters, 2013, 110, 085504.	7.8	205
11	Natural Dyes Adsorbed on TiO ₂ Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection. Nano Letters, 2008, 8, 3266-3272.	9.1	198
12	Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. Journal of Chemical Physics, 2008, 129, 054110.	3.0	191
13	Structural Model of Eumelanin. Physical Review Letters, 2006, 97, 218102.	7.8	170
14	Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 15127.	2.8	169
15	First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 3772-3778.	3.1	169
16	DNA Nucleoside Interaction and Identification with Carbon Nanotubes. Nano Letters, 2007, 7, 45-50.	9.1	156
17	Direct evidence of metallic bands in a monolayer boron sheet. Physical Review B, 2016, 94, .	3.2	152
18	Electron and Hole Dynamics in Dye-Sensitized Solar Cells: Influencing Factors and Systematic Trends. Nano Letters, 2010, 10, 1238-1247.	9.1	137

#	Article	IF	CITATIONS
19	Emergence of electron coherence and two-color all-optical switching in MoS ₂ based on spatial self-phase modulation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11800-11805.	7.1	133
20	Complexation of Flavonoids with Iron:  Structure and Optical Signatures. Journal of Physical Chemistry B, 2008, 112, 1845-1850.	2.6	132
21	Robust Stacking-Independent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. ACS Nano, 2017, 11, 12020-12026.	14.6	130
22	Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 802-812.	6.7	128
23	Monitoring Local Strain Vector in Atomic-Layered MoSe ₂ by Second-Harmonic Generation. Nano Letters, 2017, 17, 7539-7543.	9.1	128
24	Ordered and Reversible Hydrogenation of Silicene. Physical Review Letters, 2015, 114, 126101.	7.8	127
25	Correlations between Immobilizing Ions and Suppressing Hysteresis in Perovskite Solar Cells. ACS Energy Letters, 2016, 1, 266-272.	17.4	118
26	Metalâ^'Diboride Nanotubes as High-Capacity Hydrogen Storage Media. Nano Letters, 2007, 7, 663-667.	9.1	115
27	Predicting Energy Conversion Efficiency of Dye Solar Cells from First Principles. Journal of Physical Chemistry C, 2014, 118, 16447-16457.	3.1	115
28	Quantized Water Transport: Ideal Desalination through Graphyne-4 Membrane. Scientific Reports, 2013, 3, 3163.	3.3	113
29	Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. ACS Nano, 2016, 10, 5452-5458.	14.6	106
30	pH-Dependent Synthesis of Novel Structure-Controllable Polymer-Carbon NanoDots with High Acidophilic Luminescence and Super Carbon Dots Assembly for White Light-Emitting Diodes. ACS Applied Materials & Sp.; Interfaces, 2016, 8, 4062-4068.	8.0	106
31	Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Physical Review B, 2005, 71, .	3.2	105
32	A Resistance-Switchable and Ferroelectric Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 17477-17483.	13.7	103
33	Theoretical Models of Eumelanin Protomolecules and their Optical Properties. Biophysical Journal, 2008, 94, 2095-2105.	0.5	100
34	Laser picoscopy of valence electrons in solids. Nature, 2020, 583, 55-59.	27.8	100
35	First-principles study of water on copper and noble metal (110) surfaces. Physical Review B, 2008, 77, .	3.2	99
36	Solutionâ€Processable, Lowâ€Voltage, and Highâ€Performance Monolayer Fieldâ€Effect Transistors with Aqueous Stability and High Sensitivity. Advanced Materials, 2015, 27, 2113-2120.	21.0	97

#	Article	IF	Citations
37	From Silicene to Half-Silicane by Hydrogenation. ACS Nano, 2015, 9, 11192-11199.	14.6	97
38	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450.	12.8	96
39	Interfaceâ€Engineered Plasmonics in Metal/Semiconductor Heterostructures. Advanced Energy Materials, 2016, 6, 1600431.	19.5	95
40	A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III. Science Advances, 2016, 2, e1501010.	10.3	92
41	Design of a Photoactive Hybrid Bilayer Dielectric for Flexible Nonvolatile Organic Memory Transistors. ACS Nano, 2016, 10, 436-445.	14.6	91
42	Discovery of 2D Anisotropic Dirac Cones. Advanced Materials, 2018, 30, 1704025.	21.0	91
43	Atomic Structure and Bonding of Water Overlayer on Cu(110):Â The Borderline for Intact and Dissociative Adsorption. Journal of the American Chemical Society, 2006, 128, 9282-9283.	13.7	90
44	Suppressed superconductivity in substrate-supported $\langle i \rangle \hat{l}^2 \langle i \rangle \langle sub \rangle 12 \langle sub \rangle$ borophene by tensile strain and electron doping. 2D Materials, 2017, 4, 025032.	4.4	90
45	Observation of Dirac Cone Warping and Chirality Effects in Silicene. ACS Nano, 2013, 7, 9049-9054.	14.6	88
46	Ice Tessellation on a Hydroxylated Silica Surface. Physical Review Letters, 2004, 92, 146102.	7.8	87
47	Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12946-12951.	7.1	87
48	Interlayerâ€6tateâ€Coupling Dependent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. Advanced Science, 2017, 4, 1700086.	11.2	87
49	Photoinduced Nonequilibrium Topological States in Strained Black Phosphorus. Physical Review Letters, 2018, 120, 237403.	7.8	80
50	Design of Dye Acceptors for Photovoltaics from First-Principles Calculations. Journal of Physical Chemistry C, 2011, 115, 9276-9282.	3.1	78
51	Metastable phases of 2D boron sheets on Ag(1 1 1). Journal of Physics Condensed Matter, 2017, 29, 095002.	1.8	78
52	Properties of copper (fluoro-)phthalocyanine layers deposited on epitaxial graphene. Journal of Chemical Physics, 2011, 134, 194706.	3.0	77
53	Comment on Graphene Nanoflakes with Large Spin:Â Broken-Symmetry States. Nano Letters, 2008, 8, 766-766.	9.1	76
54	Water printing of ferroelectric polarization. Nature Communications, 2018, 9, 3809.	12.8	75

#	Article	IF	CITATIONS
55	The Origin of Oxygen Vacancies Controlling La _{2/3} Sr _{1/3} MnO ₃ Electronic and Magnetic Properties. Advanced Materials Interfaces, 2016, 3, 1500753.	3.7	73
56	Intrinsic valley polarization of magnetic VSe ₂ monolayers. Journal of Physics Condensed Matter, 2017, 29, 255501.	1.8	73
57	Influence of water on the electronic structure of metal-supported graphene: Insights from van der Waals density functional theory. Physical Review B, 2012, 85, .	3.2	70
58	Stacking-dependent electronic structure of bilayer silicene. Applied Physics Letters, 2014, 104, .	3.3	70
59	Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in αâ€MgAgSbâ€Based Materials. Advanced Functional Materials, 2015, 25, 6478-6488.	14.9	70
60	Structure–Property Relations in Allâ€Organic Dyeâ€5ensitized Solar Cells. Advanced Functional Materials, 2013, 23, 424-429.	14.9	68
61	Microscopic Insight into Surface Wetting: Relations between Interfacial Water Structure and the Underlying Lattice Constant. Physical Review Letters, 2013, 110, 126101.	7.8	67
62	Integrated Plasmonics: Broadband Dirac Plasmons in Borophene. Physical Review Letters, 2020, 125, 116802.	7.8	67
63	Photoexcitation in Solids: Firstâ€Principles Quantum Simulations by Realâ€√Time TDDFT. Advanced Theory and Simulations, 2018, 1, 1800055.	2.8	64
64	Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Physical Review B, 2015, 91, .	3.2	61
65	Determination of DNA-Base Orientation on Carbon Nanotubes through Directional Optical Absorbance. Nano Letters, 2007, 7, 2312-2316.	9.1	60
66	Nonlinear Rashba spin splitting in transition metal dichalcogenide monolayers. Nanoscale, 2016, 8, 17854-17860.	5.6	60
67	A molecular picture of hydrophilic and hydrophobic interactions from ab initio density functional theory calculations. Journal of Chemical Physics, 2003, 119, 7617-7620.	3.0	59
68	Consistent picture for the wetting structure of water/Ru(0001). Chemical Physics Letters, 2005, 402, 384-388.	2.6	57
69	Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters, 2017, 111, .	3.3	55
70	The 2021 ultrafast spectroscopic probes of condensed matter roadmap. Journal of Physics Condensed Matter, 2021, 33, 353001.	1.8	55
71	Screening Magnetic Two-Dimensional Atomic Crystals with Nontrivial Electronic Topology. Journal of Physical Chemistry Letters, 2018, 9, 6709-6715.	4.6	53
72	Ultrafast charge ordering by self-amplified exciton–phonon dynamics in TiSe2. Nature Communications, 2020, 11, 43.	12.8	53

#	Article	IF	Citations
73	First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Physical Review B, 2003, 67, .	3.2	51
74	Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces. Journal of Physical Chemistry C, 2010, 114, 10240-10248.	3.1	51
75	Novel Excitonic Solar Cells in Phosphorene–TiO ₂ Heterostructures with Extraordinary Charge Separation Efficiency. Journal of Physical Chemistry Letters, 2016, 7, 1880-1887.	4.6	51
76	Transparent proton transport through a two-dimensional nanomesh material. Nature Communications, 2019, 10, 3971.	12.8	50
77	Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots. Nature Photonics, 2021, 15, 510-515.	31.4	50
78	New Pathway for Hot Electron Relaxation in Two-Dimensional Heterostructures. Nano Letters, 2018, 18, 6057-6063.	9.1	49
79	Transport behavior of water molecules through two-dimensional nanopores. Journal of Chemical Physics, 2014, 141, 18C528.	3.0	48
80	Controlling Adsorption Structure of Eosin Y Dye on Nanocrystalline TiO ₂ Films for Improved Photovoltaic Performances. Journal of Physical Chemistry C, 2013, 117, 14659-14666.	3.1	47
81	Ideal type-II Weyl phonons in wurtzite Cul. Physical Review B, 2019, 100, .	3.2	45
82	Water adsorption on a NaCl (001) surface: A density functional theory study. Physical Review B, 2006, 74, .	3.2	43
83	D-Ï€-A Dye System Containing Cyano-Benzoic Acid as Anchoring Group for Dye-Sensitized Solar Cells. Langmuir, 2011, 27, 14248-14252.	3.5	41
84	Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. Physical Chemistry Chemical Physics, 2013, 15, 17187.	2.8	41
85	Theoretical Insights into Ultrafast Dynamics in Quantum Materials. Ultrafast Science, 2022, 2022, .	11.2	40
86	Mechanisms for Ultrafast Nonradiative Relaxation in Electronically Excited Eumelanin Constituents. Biophysical Journal, 2008, 95, 4396-4402.	0.5	39
87	The effect of moir \tilde{A} \otimes superstructures on topological edge states in twisted bismuthene homojunctions. Science Advances, 2020, 6, eaba 2773.	10.3	39
88	Controlling states of water droplets on nanostructured surfaces by design. Nanoscale, 2017, 9, 18240-18245.	5.6	38
89	Dual-gated single-molecule field-effect transistors beyond Moore's law. Nature Communications, 2022, 13, 1410.	12.8	38
90	Selective adsorption and electronic interaction of F16CuPcon epitaxial graphene. Physical Review B, 2010, 82, .	3.2	37

#	Article	IF	Citations
91	Superconductivity in dense carbon-based materials. Physical Review B, 2016, 93, .	3.2	37
92	Plasmon-Induced Ultrafast Hydrogen Production in Liquid Water. Journal of Physical Chemistry Letters, 2018, 9, 63-69.	4.6	37
93	Probing Nonequilibrium Dynamics of Photoexcited Polarons on a Metal-Oxide Surface with Atomic Precision. Physical Review Letters, 2020, 124, 206801.	7.8	37
94	Observation of Topological Flat Bands in the Kagome Semiconductor Nb ₃ Cl ₈ . Nano Letters, 2022, 22, 4596-4602.	9.1	37
95	Tuning Solid Surfaces from Hydrophobic to Superhydrophilic by Submonolayer Surface Modification. Physical Review Letters, 2006, 97, 036107.	7.8	36
96	Benign Interfacial Iodine Vacancies in Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 5905-5913.	3.1	36
97	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>A</mml:mi><mml:mathvariant="normal">O</mml:mathvariant="normal"></mml:msub></mml:mrow> <mml:math< td=""><td>ın>3<td>l:mn></td></td></mml:math<>	ın>3 <td>l:mn></td>	l:mn>

#	Article	IF	Citations
109	<i>Ab initio</i> evidence for nonthermal characteristics in ultrafast laser melting. Physical Review B, 2016, 94, .	3.2	32
110	Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage. Scientific Reports, 2013, 3, 1882.	3.3	31
111	Photoexcitation Induced Quantum Dynamics of Charge Density Wave and Emergence of a Collective Mode in 1 <i>T</i> -TaS ₂ . Nano Letters, 2019, 19, 6027-6034.	9.1	31
112	Ultrafast Optical Modulation of Harmonic Generation in Two-Dimensional Materials. Nano Letters, 2020, 20, 8053-8058.	9.1	31
113	Reversible Transition between Thermodynamically Stable Phases with Low Density of Oxygen Vacancies on the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:ms:wml:ms:wmml:mi>SrTiO<mml:mn>3</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mn>110</mml:mn><mml:mo) 0.784314="" 1="" 10="" 50<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>7.8 567 Td (s</td><td>30 tretchy="fal</td></mml:mo)></mml:ms:wml:ms:wmml:mi></mml:math>	7.8 567 Td (s	30 tretchy="fal
114	Turning on and off the Rotational Oscillation of a Single Porphine Molecule by Molecular Charge State. ACS Nano, 2012, 6, 4132-4136.	14.6	30
115	Chen <i>etÂal.</i> Reply:. Physical Review Letters, 2013, 110, 229702.	7.8	30
116	Plasmon-induced dynamics of H2 splitting on a silver atomic chain. Applied Physics Letters, 2015, 107, .	3.3	30
117	Dissolution dynamics of NaCl nanocrystal in liquid water. Physical Review E, 2005, 72, 012602.	2.1	29
118	Quantum plasmonics: Symmetry-dependent plasmon-molecule coupling and quantized photoconductances. Physical Review B, 2012, 86, .	3.2	29
119	Photocontrol of charge injection/extraction at electrode/semiconductor interfaces for high-photoresponsivity organic transistors. Journal of Materials Chemistry C, 2016, 4, 5289-5296.	5.5	29
120	Plasmon-driven sub-picosecond breathing of metal nanoparticles. Nanoscale, 2017, 9, 12391-12397.	5.6	29
121	Ultrafast Broadband Charge Collection from Clean Graphene/CH ₃ NH ₃ Pbl ₃ Interface. Journal of the American Chemical Society, 2018, 140, 14952-14957.	13.7	29
122	Electronic Structures and Catalytic Activities of Niobium Oxides as Electrocatalysts in Liquidâ€Junction Photovoltaic Devices. Solar Rrl, 2020, 4, 1900430.	5.8	29
123	Optical Control of Multistage Phase Transition via Phonon Coupling in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>7.8 nml:mn>2</td><td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	7.8 nml:mn>2	
124	Multilayered silicene: the bottom-up approach for a weakly relaxed Si(111) with Dirac surface states. Nanoscale, 2015, 7, 15880-15885.	5.6	28
125	Recent progresses in real-time local-basis implementation of time dependent density functional theory for electron–nucleus dynamics. Computational Materials Science, 2016, 112, 478-486.	3.0	28

Two-gap and three-gap superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>AlB</mml:mi><mml:mn>2</mml:mn3.4/mml:m28b></mml-based films. Physical Review B, 2019, 100, .

#	Article	IF	CITATIONS
127	Spin-Orientation-Dependent Topological States in Two-Dimensional Antiferromagnetic NiTl ₂ S ₄ Monolayers. Nano Letters, 2019, 19, 3321-3326.	9.1	28
128	Flat AgTe Honeycomb Monolayer on Ag(111). Journal of Physical Chemistry Letters, 2019, 10, 1866-1871.	4.6	28
129	Effective Hamiltonian for FeAs-based superconductors. Physical Review B, 2008, 78, .	3.2	27
130	Basic science of water: Challenges and current status towards a molecular picture. Nano Research, 2015, 8, 3085-3110.	10.4	27
131	Wetting behavior of water on silicon carbide polar surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28033-28039.	2.8	27
132	Structure and quantum well states in silicene nanoribbons on Ag(110). Surface Science, 2016, 645, 74-79.	1.9	27
133	Atomistic nature of NaCl nucleation at the solid-liquid interface. Journal of Chemical Physics, 2007, 126, 044708.	3.0	26
134	High thermopower and potential thermoelectric properties of crystalline LiH and NaH. Physical Review B, 2017, 95, .	3.2	26
135	Superstructure-Induced Splitting of Dirac Cones in Silicene. Physical Review Letters, 2019, 122, 196801.	7.8	26
136	Two-dimensional hydration shells of alkali metal ions at a hydrophobic surface. Journal of Chemical Physics, 2004, 121, 12572.	3.0	25
137	Exotic thermoelectric behavior in nitrogenated holey graphene. RSC Advances, 2017, 7, 25803-25810.	3.6	25
138	Effects of line defects on the electronic and optical properties of strain-engineered WO ₃ thin films. Journal of Materials Chemistry C, 2017, 5, 11694-11699.	5.5	25
139	Universal Scaling of Intrinsic Resistivity in Twoâ€Dimensional Metallic Borophene. Angewandte Chemie - International Edition, 2018, 57, 4585-4589.	13.8	25
140	Hidden spin polarization in the 1 T -phase layered transition-metal dichalcogenides MX 2 (M  = Zr, Hf; X) Tj	ЕТ <u>О</u> дО О С) rgBT /Overlo
141	Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface. ACS Nano, 2018, 12, 6452-6457.	14.6	25
142	Water transport through subnanopores in the ultimate size limit: Mechanism from molecular dynamics. Nano Research, 2019, 12, 587-592.	10.4	25
143	Manipulating Weyl quasiparticles by orbital-selective photoexcitation in WTe2. Nature Communications, 2021, 12, 1885.	12.8	25
144	Cooperative evolution of intraband and interband excitations for high-harmonic generation in strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2<td>:m<mark>3.2</mark>:/mn</td><td>nl:msub></td></mml:mn></mml:msub></mml:math>	:m <mark>3.2</mark> :/mn	nl:msub>

#	Article	lF	Citations
145	Anomalous electronic and thermoelectric transport properties in cubic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Rb</mml:mi><mml:nantiperovskite. .<="" 102,="" 2020,="" b,="" physical="" review="" td=""><td>າກ ଃ3⊵/mm</td><td>าไ:rช#></td></mml:nantiperovskite.></mml:msub></mml:mrow></mml:math>	າກ ଃ 3⊵/mm	าไ:rช#>
146	Indirect to Direct Charge Transfer Transition in Plasmonâ€Enabled CO ₂ Photoreduction. Advanced Science, 2022, 9, e2102978.	11.2	24
147	Intrinsic electronic transport and thermoelectric power factor in n-type doped monolayer MoS ₂ . New Journal of Physics, 2018, 20, 043009.	2.9	23
148	Phonon thermal transport in a class of graphene allotropes from first principles. Physical Chemistry Chemical Physics, 2018, 20, 15980-15985.	2.8	23
149	Screening two-dimensional materials with topological flat bands. Physical Review Materials, 2021, 5, .	2.4	23
150	Prediction of two-dimensional electron gas mediated magnetoelectric coupling at ferroelectric <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>PbTiO</mml:mi><mr .<="" 2017,="" 95,="" b,="" heterostructures.="" physical="" review="" td=""><td>nl:312 nl:mn>3<!--</td--><td> mml:mn></td></td></mr></mml:msub></mml:mrow></mml:math>	nl:312 nl:mn>3 </td <td> mml:mn></td>	mml:mn>
151	Nonadiabatic Dynamics of Photocatalytic Water Splitting on A Polymeric Semiconductor. Nano Letters, 2021, 21, 6449-6455.	9.1	22
152	Menget al.Reply:. Physical Review Letters, 2003, 91, .	7.8	21
153	Momentum-resolved TDDFT algorithm in atomic basis for real time tracking of electronic excitation. Journal of Chemical Physics, 2018, 149, 154104.	3.0	21
154	A molecular dynamics study of hydration and dissolution of NaCl nanocrystal in liquid water. Journal of Physics Condensed Matter, 2006, 18, 10165-10177.	1.8	20
155	Water wettability of close-packed metal surfaces. Journal of Chemical Physics, 2007, 127, 244710.	3.0	20
156	Quinoid conjugated dye designed for efficient sensitizer in dye sensitized solar cells. Chemical Physics Letters, 2013, 586, 97-99.	2.6	20
157	Carbene-mediated self-assembly of diamondoids on metal surfaces. Nanoscale, 2016, 8, 8966-8975.	5.6	20
158	An Iron-Porphyrin Complex with Large Easy-Axis Magnetic Anisotropy on Metal Substrate. ACS Nano, 2017, 11, 11402-11408.	14.6	20
159	Dirac cone pairs in silicene induced by interface Si-Ag hybridization: A first-principles effective band study. Physical Review B, 2017, 95, .	3.2	20
160	Hexagonal Monolayer Ice without Shared Edges. Physical Review Letters, 2018, 121, 256001.	7.8	20
161	Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Research, 2022, 15, 1486-1491.	10.4	20
162	Dye Sensitized Solar Cells Principles and New Design. , 0, , .		19

#	Article	IF	Citations
163	Longâ€Lived Multifunctional Superhydrophobic Heterostructure Via Molecular Selfâ€Supply. Advanced Materials Interfaces, 2016, 3, 1500727.	3.7	19
164	Plasmon-induced nonlinear response of silver atomic chains. Nanoscale, 2018, 10, 8600-8605.	5.6	19
165	Water wetting on representative metal surfaces: Improved description from van der Waals density functionals. Chemical Physics Letters, 2012, 521, 161-166.	2.6	18
166	Magnetic Dirac fermions and Chern insulator supported on pristine silicon surface. Physical Review B, 2016, 94, .	3.2	18
167	Nucleation and dissociation of methane clathrate embryo at the gas–water interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23410-23415.	7.1	18
168	Fermionic Analogue of High Temperature Hawking Radiation in Black Phosphorus. Chinese Physics Letters, 2020, 37, 067101.	3.3	18
169	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">MgB</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> trilayer film: A four-gap superconductor. Physical Review B, 2020, 101, .	3.2	18
170	Firstâ€principles dynamics of photoexcited molecules and materials towards a quantum description. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1492.	14.6	18
171	Tunable electron-phonon coupling superconductivity in platinum diselenide. Physical Review Materials, 2017, 1 , .	2.4	18
172	Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976.	4.6	18
173	Silicene: from monolayer to multilayer — A concise review. Chinese Physics B, 2015, 24, 086102.	1.4	17
174	Bis(pyrazol-1-yl)methane as Non-Chromophoric Ancillary Ligand for Charged Bis-Cyclometalated Iridium(III) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 3209-3215.	2.0	16
175	Extreme nonlinear strong-field photoemission from carbon nanotubes. Nature Communications, 2019, 10, 4891.	12.8	16
176	Water nanostructure formation on oxide probed in situ by optical resonances. Science Advances, 2019, 5, eaax6973.	10.3	16
177	Improving Photovoltaic Stability and Performance of Perovskite Solar Cells by Molecular Interface Engineering. Journal of Physical Chemistry C, 2019, 123, 1219-1225.	3.1	16
178	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie - International Edition, 2021, 60, 12274-12278.	13.8	16
179	Low lattice thermal conductivity and good thermoelectric performance of cinnabar. Physical Review Materials, 2017, 1, .	2.4	16
180	Ultrafast Internal Exciton Dissociation through Edge States in MoS ₂ Nanosheets with Diffusion Blocking. Nano Letters, 2022, 22, 5651-5658.	9.1	16

#	Article	IF	CITATIONS
181	Optical properties of clusters and molecules from real-time time-dependent density functional theory using a self-consistent field. Molecular Physics, 2010, 108, 1829-1844.	1.7	15
182	Ultrasmall Silver Nanopores Fabricated by Femtosecond Laser Pulses. Nano Letters, 2011, 11, 3251-3257.	9.1	15
183	Tunable hydrophobicity on fractal and micro-nanoscale hierarchical fracture surface of metallic glasses. Materials and Design, 2016, 95, 612-617.	7.0	15
184	Distribution and concentration of surface oxygen vacancy of TiO ₂ and its photocatalytic activity. Journal Physics D: Applied Physics, 2020, 53, 424001.	2.8	15
185	Electric Field Tunable Ultrafast Interlayer Charge Transfer in Graphene/WS ₂ Heterostructure. Nano Letters, 2021, 21, 4403-4409.	9.1	15
186	High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode. Nano Letters, 2016, 16, 3600-3606.	9.1	14
187	Vibrational relaxation dynamics of the nitrogen-vacancy center in diamond. Physical Review B, 2018, 97,	3.2	14
188	Hard BN Clathrate Superconductors. Journal of Physical Chemistry Letters, 2019, 10, 2554-2560.	4.6	14
189	Toward attosecond control of electron dynamics in two-dimensional materials. Applied Physics Letters, 2020, 116, .	3.3	14
190	Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	13
191	Phonon thermal transport in monolayer FeB2 from first principles. Computational Materials Science, 2018, 147, 132-136.	3.0	13
192	Low lattice thermal conductivity and excellent thermoelectric behavior in Li3Sb and Li3Bi. Journal of Physics Condensed Matter, 2018, 30, 425401.	1.8	13
193	Reducing Anomalous Hysteresis in Perovskite Solar Cells by Suppressing the Interfacial Ferroelectric Order. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12275-12284.	8.0	13
194	Suppression of nonradiative recombination in ionic insulators by defects: Role of fast electron trapping in Tl-doped Csl. Physical Review B, 2013, 87, .	3.2	12
195	"H ₂ sponge― pressure as a means for reversible high-capacity hydrogen storage in nanoporous Ca-intercalated covalent organic frameworks. Nanoscale, 2015, 7, 6319-6324.	5.6	12
196	Inducing Transient Charge State of a Single Water Cluster on Cu(111) Surface. ACS Nano, 2016, 10, 4489-4495.	14.6	12
197	A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces. Nanoscale, 2017, 9, 3843-3849.	5.6	12
198	Engineering Dirac states in graphene: Coexisting type-I and type-II Floquet-Dirac fermions. Physical Review B, 2019, 99, .	3.2	12

#	Article	IF	Citations
199	Single-water-dipole-layer-driven Reversible Charge Order Transition in 1 <i>T</i> -TaS ₂ . Nano Letters, 2020, 20, 8854-8860.	9.1	12
200	Probing Laser-Induced Plasma Generation in Liquid Water. Journal of the American Chemical Society, 2021, 143, 10382-10388.	13.7	12
201	Observation of One-Dimensional Dirac Fermions in Silicon Nanoribbons. Nano Letters, 2022, 22, 695-701.	9.1	12
202	Initial interactions between water molecules and Ti-adsorbed carbon nanotubes. Applied Physics Letters, 2007, 91, 161906.	3.3	11
203	Ice II-like Monolayer Ice Grown on Graphite Surface. Journal of Physical Chemistry C, 2019, 123, 20297-20303.	3.1	11
204	Visualizing molecular orientational ordering and electronic structure in CsnC60 fulleride films. Physical Review B, 2020, 101, .	3.2	11
205	Direct observation of atomic-level fractal structure in a metallic glass membrane. Science Bulletin, 2021, 66, 1312-1318.	9.0	11
206	Low lattice thermal conductivity and high figure of merit in nâ€type doped <scp>fullâ€Heusler</scp> compounds X ₂ <scp>YAu</scp> (XÂ=ÂSr, Ba; YÂ=Âas, Sb). International Journal of Energy Research, 2021, 45, 20949-20958.	4.5	11
207	Quantum simulation of molecular interaction and dynamics at surfaces. Frontiers of Physics, 2011, 6, 294-308.	5.0	10
208	Tuning magnetic splitting of zigzag graphene nanoribbons by edge functionalization with hydroxyl groups. Journal of Applied Physics, 2015, 117, .	2.5	10
209	Free-Standing Single-Molecule Thick Crystals Consisting of Linear Long-Chain Polymers. Nano Letters, 2017, 17, 1655-1659.	9.1	10
210	Superconducting transition of FeSe / SrTiO3 induced by adsorption of semiconducting organic molecules. Physical Review B, 2017, 95, .	3.2	10
211	Optical Properties of Single- and Double-Functionalized Small Diamondoids. Journal of Physical Chemistry A, 2018, 122, 3583-3593.	2.5	10
212	Transparency in graphene mediated evaporation. 2D Materials, 2018, 5, 041001.	4.4	10
213	Phase Transition Photodetection in Charge Density Wave Tantalum Disulfide. Nano Letters, 2020, 20, 6725-6731.	9.1	10
214	Plasmon-Mediated CO ₂ Photoreduction via Indirect Charge Transfer on Small Silver Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 26348-26353.	3.1	10
215	Tracking photocarrier-enhanced electron-phonon coupling in nonequilibrium. Npj Quantum Materials, 2022, 7, .	5.2	10
216	Calibrating Out-of-Equilibrium Electron–Phonon Couplings in Photoexcited MoS ₂ . Nano Letters, 2022, 22, 4800-4806.	9.1	10

#	Article	IF	CITATIONS
217	Atomistic mechanism of charge separation upon photoexcitation at the dye–semiconductor interface for photovoltaic applications. Physical Chemistry Chemical Physics, 2011, 13, 13196.	2.8	9
218	Spin-polarized valley Hall effect in ultrathin silicon nanomembrane via interlayer antiferromagnetic coupling. 2D Materials, 2016, 3, 035026.	4.4	9
219	Fe on Sb(111): Potential Two-Dimensional Ferromagnetic Superstructures. ACS Nano, 2017, 11, 2143-2149.	14.6	9
220	Band evolution of two-dimensional transition metal dichalcogenides under electric fields. Applied Physics Letters, 2019, 115, 083104.	3.3	9
221	Giant photoinduced lattice distortion in oxygen vacancy ordered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>SrCoO</mml:mi><mml:mrow><mm .<="" 100,="" 2019,="" b,="" films.="" physical="" review="" td="" thin=""><td>າໄສາ2ກ>2.5∢</td><td><<i>[</i>∌nml:mn>⊹</td></mm></mml:mrow></mml:msub></mml:math>	າໄ ສາ2 ກ>2.5∢	< <i>[</i> ∌nml:mn>⊹
222	Pressure induced excellent thermoelectric behavior in skutterudites CoSb ₃ and IrSb ₃ . Physical Chemistry Chemical Physics, 2019, 21, 851-858.	2.8	9
223	Experimental observation of Dirac cones in artificial graphene lattices. Physical Review B, 2020, 102, .	3.2	9
224	Controlling catalytic activity of gold cluster on MgO thin film for water splitting. Physical Review Materials, 2017, 1, .	2.4	9
225	Plasmon-mediated photodecomposition of NH3 via intramolecular charge transfer. Nano Research, 2022, 15, 3894-3900.	10.4	9
226	Effect of symmetry breaking on the optical absorption of semiconductor nanoparticles. Physical Review B, 2011, 84, .	3.2	8
227	Scanning tunneling microscopy investigations of unoccupied surface states in two-dimensional semiconducting β-√3 × √3-Bi/Si(111) surface. Physical Chemistry Chemical Physics, 2018, 20, 20188-20193.	2.8	8
228	Quartic anharmonicity and ultraâ€low lattice thermal conductivity of alkali antimonide compounds M 3 Sb (M = K, Rb and Cs). International Journal of Energy Research, 2021, 45, 6958-6965.	4.5	8
229	Image force effects on trapezoidal barrier parameters in metal–insulator–metal tunnel junctions. Thin Solid Films, 2003, 436, 292-297.	1.8	7
230	Interaction of DNA with CNTs: Properties and Prospects for Electronic Sequencing., 0,, 67-96.		7
231	Is the nature of magnetic order in copper-oxides and in iron-pnictides different?. Solid State Communications, 2010, 150, 62-65.	1.9	7
232	Promote water photosplitting via tuning quantum well states in supported metal clusters. Physical Review B, 2012, 86, .	3.2	7
233	A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells. Science China Chemistry, 2018, 61, 437-443.	8.2	7
234	The excellent TE performance of photoelectric material CdSe along with a study of $Zn(Cd)Se$ and $Zn(Cd)Te$ based on first-principles. RSC Advances, 2019, 9, 25471-25479.	3.6	7

#	Article	IF	CITATIONS
235	Quantum dynamics simulations: combining path integral nuclear dynamics and real-time TDDFT. Electronic Structure, 2019, 1, 044005.	2.8	7
236	The structural, electronic and optic properties in a series of M2XY ($M = Ga$, In; X,Y = S, Se, Te) Janus monolayer materials based on GW and the Bethe-Salpeter equation. European Physical Journal B, 2020, 93, 1.	1.5	7
237	A comprehensive phonon thermal transport study of 2D hexagonal MX2 and orthorhombic M2X3 (M =) Tj ETQq1	1,0,78431 1.9	.4 rgBT /Ov
238	Low thermal conductivity and good thermoelectric performance in mercury chalcogenides. Computational Materials Science, 2020, 185, 109960.	3.0	7
239	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>d</mml:mi> -orbital magnetic Dirac fermions in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml:mathvariant="normal">S<mml:mn>2</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math>	i ^{3.2}	7
240	monolayer with squared pentagon structure. Physical Review B, 2020, 101, . <i>In-Situ</i> Manipulation of the Magnetic Anisotropy of Single Mn Atom via Molecular Ligands. Nano Letters, 2021, 21, 3566-3572.	9.1	7
241	Creation of a novel inverted charge density wave state. Structural Dynamics, 2022, 9, 014501.	2.3	7
242	Molecular origin of fast evaporation at the solid–water–vapor line in a sessile droplet. Nanoscale, 2022, 14, 2729-2734.	5.6	7
243	High-temperature fractional quantum Hall state in the Floquet kagome flat band. Physical Review B, 2022, 105, .	3.2	7
244	Sequential assembly of metal-free phthalocyanine on few-layer epitaxial graphene mediated by thickness-dependent surface potential. Nano Research, 2012, 5, 543-549.	10.4	6
245	Prediction of silicon-based room temperature quantum spin Hall insulator via orbital mixing. Europhysics Letters, 2016, 113, 67003.	2.0	6
246	Tunable magnetic moment and potential half-metal behavior of Fe-nanostructure-embedded graphene perforation. Carbon, 2016, 107, 268-272.	10.3	6
247	Infrared spectroscopic study on lattice dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaFeO</mml:mi><mml:mn>3<td> :&n:2n > < m r</td><td>nd:msub> <</td></mml:mn></mml:msub></mml:math>	 :&n:2n > < m r	nd:msub> <
248	Direct imaging of surface states hidden in the third layer of Si (111)-7 × 7 surface by <i>pz</i> hybrid Applied Physics Letters, 2018, 113, .	^{).} 3.3	6
249	<i>Ab initio</i> study on anisotropic thermoelectric transport in ternary pnictide KZnP. JPhys Materials, 2019, 2, 024001.	4.2	6
250	Tuning of the oxygen vacancies in LaCoO3 films at the atomic scale. Applied Physics Letters, 2021, 118, .	3.3	6
251	Plasmon-Induced Water Splitting on Ag-Alloyed Pt Single-Atom Catalysts. Frontiers in Chemistry, 2021, 9, 742794.	3.6	6
252	Molecular transport across a two-dimensional nanomesh membrane–graphdiyne. Journal Physics D: Applied Physics, 2020, 53, 493003.	2.8	6

#	Article	IF	Citations
253	Kondo Effect Mediated Topological Protection: Co on Sb(111). ACS Nano, 2014, 8, 11576-11582.	14.6	5
254	New sensitizers containing amide moieties as electron-accepting and anchoring groups for dye-sensitized solar cells. RSC Advances, 2016, 6, 74039-74045.	3.6	5
255	Highâ€Efficiency Photovoltaic Conversion at Selective Electron Tunneling Heterointerfaces. Advanced Electronic Materials, 2017, 3, 1700211.	5.1	5
256	Real-Space Imaging of Orbital Selectivity on SrTiO ₃ (001) Surface. ACS Applied Materials & Amp; Interfaces, 2019, 11, 37279-37284.	8.0	5
257	Effect of single point defect on local properties in BiFeO3 thin film. Acta Materialia, 2019, 170, 132-137.	7.9	5
258	Dynamic defect as nonradiative recombination center in semiconductors. Physical Review B, 2019, 100, .	3.2	5
259	Inspecting the nonbonding and antibonding orbitals in a surface-supported metal–organic framework. Chemical Communications, 2021, 57, 4580-4583.	4.1	5
260	Traversing Double-Well Potential Energy Surfaces: Photoinduced Concurrent Intralayer and Interlayer Structural Transitions in $XTe < sub > 2 < /sub > (X = Mo, W)$. ACS Nano, 2022, 16, 11124-11135.	14.6	5
261	Exactly solvable model for metal–insulator–metal stepped boundary tunnel junctions. Thin Solid Films, 2002, 414, 136-142.	1.8	4
262	The pressure induced phase transition of confined water from ab initio molecular dynamics simulation. Journal of Physics Condensed Matter, 2004, 16, 8851-8859.	1.8	4
263	Dye-sensitized solar cells: Atomic scale investigation of interface structure and dynamics. Chinese Physics B, 2014, 23, 086801.	1.4	4
264	Surface confined quantum well state in MoS2(0001) thin film. Applied Physics Letters, 2015, 107, .	3.3	4
265	Orbital dependent interaction of quantum well states for catalytic water splitting. New Journal of Physics, 2015, 17, 013023.	2.9	4
266	Mechanism and modulation of terahertz generation from a semimetal - graphite. Scientific Reports, 2016, 6, 22798.	3.3	4
267	Universal Scaling of Intrinsic Resistivity in Twoâ€Dimensional Metallic Borophene. Angewandte Chemie, 2018, 130, 4675-4679.	2.0	4
268	Reply to "Comment on " <i>Ab initio</i> evidence for nonthermal characteristics in ultrafast laser meltingâ€â€‰â€• Physical Review B, 2019, 99, .	3.2	4
269	Role of Explicitly Included Solvents on Ultrafast Electron Injection and Recombination Dynamics at TiO ₂ /Dye Interfaces. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49174-49181.	8.0	4
270	Thermally induced band hybridization in bilayer-bilayer MoS ₂ /WS ₂ heterostructure*. Chinese Physics B, 2021, 30, 057801.	1.4	4

#	Article	IF	Citations
271	High-Throughput Screening of Element-Doped Carbon Nanotubes Toward an Optimal One-Dimensional Superconductor. Journal of Physical Chemistry Letters, 2021, 12, 6667-6675.	4.6	4
272	Emergent perpendicular magnetic anisotropy at the interface of an oxide heterostructure. Physical Review B, 2021, 104, .	3.2	4
273	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>î±</mml:mi><mml:mtext>â^'</mml:mtext>â^'A<mml:msub><mml:mi mathvariant="normal" ="">A</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi< td=""><td>2.4</td><td>4</td></mml:mi<></mml:msub></mml:mrow>	2.4	4
274	mathvariant="normal">O <mml:mn>3</mml:mn> <mml:mrow><mml:mo>(</mml:mo>< -supported Ni. Physical Review Materials, 2017, 1, . Viable substrates for the honeycomb-borophene growth. Physical Review Materials, 2021, 5, .</mml:mrow>	mml:mn>0 2.4	4
275	Atomistic insights into plasmon induced water splitting. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	5.1	3
276	Self-assembly of glycine on Cu(001): the effect of temperature and polarity. RSC Advances, 2017, 7, 4116-4123.	3.6	3
277	Comprehensive calculations and prominent thermoelectric properties of Li3P and Li3As. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2802-2808.	2.1	3
278	Rotational and Vibrational Excitations of a Single Water Molecule by Inelastic Electron Tunneling Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 1650-1655.	4.6	3
279	The valley degree of freedom of an electron. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 187301.	0.5	3
280	Theoretical Models of Eumelanin Protomolecule and Its Photoprotection Mechanism. Biophysical Journal, 2009, 96, 300a.	0.5	2
281	Robust quantum spin Hall state and quantum anomalous Hall state in graphenelike BC3 with adatoms. New Journal of Physics, 2018, 20, 073047.	2.9	2
282	First-principles study of phonon thermal transport in II–VI group graphenelike materials. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 062202.	2.1	2
283	Unravelling a Zigzag Pathway for Hot Carrier Collection with Graphene Electrode. Journal of Physical Chemistry Letters, 2021, 12, 2886-2891.	4.6	2
284	Ultra-low lattice thermal conductivity and high thermoelectric efficiency of K3AuO. Journal of Applied Physics, 2021, 130, 045101.	2.5	2
285	Epitaxial growth and band structure of antiferromagnetic Mott insulator CeOI. Physical Review Materials, 2020, 4, .	2.4	2
286	Durably Self-Sustained Droplet on a Fully Miscible Liquid Film. Langmuir, 2022, 38, 3993-4000.	3.5	2
287	The High-Temperature Oxidation of Nb-40Ti-15Al and the Effect of Cr Alloying and Silicide Diffusion Coatings. Materials Research Society Symposia Proceedings, 1994, 364, 1327.	0.1	1
288	All‧ilicon Switchable Magnetoelectric Effect through Interlayer Exchange Coupling. ChemPhysChem, 2017, 18, 1916-1920.	2.1	1

#	Article	IF	CITATIONS
289	Macroscopic superhydrophobicity achieved by atomic decoration with silicones. Journal of Chemical Physics, 2018, 149, 014706.	3.0	1
290	Water on surfaces from first-principles molecular dynamics. Chinese Physics B, 2020, 29, 116804.	1.4	1
291	Advances in methods and applications of nonadiabatic quantum dynamics simulation of condensed matters. Chinese Science Bulletin, 2021, 66, 3088-3099.	0.7	1
292	Non-Hermitian topological states in 2D line-graph lattices: evolving triple exceptional points on reciprocal line graphs. New Journal of Physics, 2021, 23, 123038.	2.9	1
293	Nonadiabatic electron-phonon coupling and its effects on superconductivity. Physical Review B, 2022, 105, .	3.2	1
294	Water overlayers on Cu(110) studied by van der Waals density functionals., 2012,, 67-75.		0
295	Low thermal conductivity and good thermoelectric performance in mercury chalcogenides. Computational Materials Science, 2021, 188, 110192.	3.0	0
296	Local Kondo scattering in 4d-electron RuO _{<i>x</i>} nanoclusters on atomically-resolved ultrathin SrRuO ₃ films. Physical Chemistry Chemical Physics, 2021, 23, 22526-22531.	2.8	0
297	Atomically Precise Engineering of Singleâ€Molecule Stereoelectronic Effect. Angewandte Chemie, 2021, 133, 12382-12386.	2.0	0
298	Calibrating the unphysical divergence in TDDFTÂ+ÂU simulations of a correlated oxide. Computational Materials Science, 2022, 203, 111167.	3.0	0