Billy D O Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138968/publications.pdf

Version: 2024-02-01

33 papers 1,091 citations

687363 13 h-index 25 g-index

34 all docs

34 docs citations

times ranked

34

925 citing authors

#	Article	IF	CITATIONS
1	Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress in Materials Science, 2012, 57, 1426-1491.	32.8	374
2	Efficient ~2 νm Tm^3+-doped tellurite fiber laser. Optics Letters, 2008, 33, 402.	3.3	123
3	Infrared emission and energy transfer in Tm^3+, Tm^3+-Ho^3+ and Tm^3+-Yb^3+-doped tellurite fibre. Optics Express, 2007, 15, 6546.	3.4	98
4	Enhancement in pump inversion efficiency at 980 nm in Er3+, Er3+/Eu3++ and Er3+/Ce3+doped tellurite glass fibers. Optics Express, 2006, 14, 5050.	3.4	73
5	A Yb^3+/Tm^3+/Ho^3+ triply-doped tellurite fibre laser. Optics Express, 2008, 16, 10690.	3.4	73
6	Tm^3+/Ho^3+ codoped tellurite fiber laser. Optics Letters, 2008, 33, 1282.	3.3	65
7	Investigation on germanium oxide-based glasses for infrared optical fibre development. Optical Materials, 2009, 31, 1701-1706.	3.6	48
8	Numerical Rate Equation Modeling of a ${\sinh {2.1}}-\mu{6.1}$ Ho ${3+}$ Co-Doped Tellurite Fiber Laser. Journal of Lightwave Technology, 2009, 27, 4280-4288.	4.6	36
9	Enhanced $2.0\hat{1}$ /4m emission and energy transfer in Yb3+/Ho3+/Ce3+ triply doped tellurite glass. Journal of Non-Crystalline Solids, 2012, 358, 1644-1648.	3.1	34
10	Femtosecond pulsed laser deposition of silicon thin films. Nanoscale Research Letters, 2013, 8, 272.	5.7	21
11	Theoretical Modeling of a \$sim {2}~mu{m m}~{m Tm}^{3+}\$-Doped Tellurite Fiber Laser: The Influence of Cross Relaxation. Journal of Lightwave Technology, 2009, 27, 4026-4032.	4.6	20
12	Femtosecond laser ablation properties of Er3+ ion doped zinc-sodium tellurite glass. Journal of Applied Physics, $2018,124,.$	2.5	16
13	$\hat{a}^1/42\hat{l}^1/4$ m Tm3+/Yb3+-doped tellurite fibre laser. Journal of Materials Science: Materials in Electronics, 2009, 20, 317-320.	2.2	14
14	Reduction of OH ^{â^'} ions in tellurite glasses using chlorine and oxygen gases. Journal of Materials Research, 2013, 28, 3226-3233.	2.6	13
15	Oxide glasses for mid-infrared lasers. Proceedings of SPIE, 2011, , .	0.8	11
16	Tm3+ doped silicon thin film and waveguides for mid-infrared sources. Applied Physics Letters, 2012, 101, .	3.3	11
17	White light induced covalent modification of graphene using a phenazine dye. Chemical Communications, 2017, 53, 10715-10718.	4.1	11
18	Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers. Journal of Materials Science: Materials in Electronics, 2007, 18, 315-320.	2.2	9

#	Article	IF	CITATIONS
19	Erbiumâ€lonâ€Doped Tellurite Glass Fibers and Waveguides—Devices and Future Prospective: Part II. International Journal of Applied Glass Science, 2013, 4, 202-213.	2.0	8
20	Lasers Utilising Tellurite Glass-Based Gain Media. Springer Series in Materials Science, 2017, , 101-130.	0.6	8
21	A photochemical approach for a fast and self-limited covalent modification of surface supported graphene with photoactive dyes. Nanotechnology, 2018, 29, 275705.	2.6	6
22	Erbiumâ€lonâ€Doped Tellurite Glasss Fibers and Waveguides â€" Devices and Future Prospective: <scp>PART</scp> I. International Journal of Applied Glass Science, 2013, 4, 192-201.	2.0	4
23	Recent advances in mid-IR optical fibres for chemical and biological sensing in the 2-15 \hat{l} 4m spectral range. , 2009, , .		3
24	Engineering rare-earth-doped heavy metal oxide glasses for 2-5 νm lasers. , 2010, , .		3
25	CW and Q-switched 2.1 \hat{l} 4m Tm ³⁺ /Ho ³⁺ /Yb ³⁺ -triply-doped tellurite fibre lasers. Proceedings of SPIE, 2008, , .	0.8	2
26	Femtosecond pulsed laser deposited Er3+-doped zinc-sodium tellurite glass on Si: Thin-film structural and photoluminescence properties. AIP Advances, 2019, 9, .	1.3	2
27	Time resolve spectroscopy and energy transfer in Tm3+- Ho3+and Tm3+- Tb3+doped tellurite glasses. , 2006, , .		1
28	Emission spectroscopy and energy transfer in Tm3+, Tm3+-Ho3+and Tm3+-Yb3+doped tellurite fibers. , 2006, , .		1
29	Numerical rate equation modelling of a 1.61 \hat{l} 4m pumped ~2 \hat{l} 4m Tm3+-doped tellurite fibre laser., 2008,,.		1
30	Mid-infrared emission from Dy3+doped tellurite bulk glass and waveguides. , 2012, , .		1
31	Tm ³⁺ Tellurite-Modified-Silica Glass Thin Films Fabricated Using Ultrafast Laser Plasma Doping. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	2.9	1
32	Efficient 1.9 μm Tm3+/Yb3+-doped tellurite fibre laser. Proceedings of SPIE, 2007, , .	0.8	0
33	Two micron tellurite fibre lasers. , 2011, , .		0