
nicolas Cenac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138898/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery and quantification of lipoamino acids in bacteria. Analytica Chimica Acta, 2022, 1193, 339316.	5.4	4
2	Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. Journal of Neuroinflammation, 2022, 19, 7.	7.2	6
3	Identification of bacterial lipo-amino acids: origin of regenerated fatty acid carboxylate from dissociation of lipo-glutamate anion. Amino Acids, 2022, 54, 241.	2.7	3
4	Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut, 2021, 70, 1088-1097.	12.1	105
5	PGI2 Inhibits Intestinal Epithelial Permeability and Apoptosis to Alleviate Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1037-1060.	4.5	20
6	Endothelin-1 Exhibiting Pro-Nociceptive and Pro-Peristaltic Activities Is Increased in Peritoneal Carcinomatosis. Frontiers in Pain Research, 2021, 2, 613187.	2.0	1
7	Uropathogenic E. coli induces DNA damage in the bladder. PLoS Pathogens, 2021, 17, e1009310.	4.7	18
8	Mas-related G protein-coupled receptors (Mrgprs) – Key regulators of neuroimmune interactions. Neuroscience Letters, 2021, 749, 135724.	2.1	24
9	Peripheral Opioid Receptor Blockade Enhances Epithelial Damage in Piroxicam-Accelerated Colitis in IL-10-Deficient Mice. International Journal of Molecular Sciences, 2021, 22, 7387.	4.1	6
10	Endogenous control of inflammatory visceral pain by T cellâ€derived opioids in ILâ€10â€deficient mice. Neurogastroenterology and Motility, 2020, 32, e13743.	3.0	13
11	Intrinsic alterations in peripheral neutrophils from cystic fibrosis newborn piglets. Journal of Cystic Fibrosis, 2020, 19, 830-836.	0.7	6
12	Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro. Aging, 2020, 12, 22266-22290.	3.1	15
13	Pseudomonas aeruginosa Lipoxygenase LoxA Contributes to Lung Infection by Altering the Host Immune Lipid Signaling. Frontiers in Microbiology, 2019, 10, 1826.	3.5	25
14	Polyunsaturated fatty acid metabolites: biosynthesis in Leishmania and role in parasite/host interaction. Journal of Lipid Research, 2019, 60, 636-647.	4.2	20
15	House dust mites activate nociceptor–mast cell clusters to drive type 2 skin inflammation. Nature Immunology, 2019, 20, 1435-1443.	14.5	196
16	Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators–induced signaling to thoracic human sensory neurons. Pain, 2018, 159, 1257-1267.	4.2	31
17	T-lymphocyte-derived enkephalins reduce Th1/Th17 colitis and associated pain in mice. Journal of Gastroenterology, 2018, 53, 215-226.	5.1	26
18	Mobilization of CD4+ T lymphocytes in inflamed mucosa reduces pain in colitis mice: toward a vaccinal strategy to alleviate inflammatory visceral pain. Pain, 2018, 159, 331-341.	4.2	22

#	Article	IF	CITATIONS
19	Rapid and Efficient Production of Human Functional Mast Cells through a Three-Dimensional Culture of Adipose Tissue–Derived Stromal Vascular Cells. Journal of Immunology, 2018, 201, 3815-3821.	0.8	10
20	5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein–coupled receptor D. Science Signaling, 2018, 11, .	3.6	44
21	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	12.1	73
22	Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut, 2017, 66, 1767-1778.	12.1	101
23	Proteaseâ€activated receptor 2 contributes to <i>Toxoplasma gondii</i> â€mediated gut inflammation. Parasite Immunology, 2017, 39, e12489.	1.5	12
24	Targeting fatty acid amide hydrolase and transient receptor potential vanilloidâ€1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with Nâ€arachidonoylâ€serotonin (<scp>AA</scp> â€5â€ <scp>HT</scp>). Neurogastroenterology and Motility, 2017, 29, e13148.	3.0	10
25	Identification of an analgesic lipopeptide produced by the probiotic Escherichia coli strain Nissle 1917. Nature Communications, 2017, 8, 1314.	12.8	86
26	FPR2: A Novel Promising Target for the Treatment of Influenza. Frontiers in Microbiology, 2017, 8, 1719.	3.5	27
27	PPAR ^{ĵ3} Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells. PLoS Pathogens, 2016, 12, e1005547.	4.7	41
28	In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L664-L675.	2.9	31
29	Formyl Peptide Receptor 2 Plays a Deleterious Role During Influenza A Virus Infections. Journal of Infectious Diseases, 2016, 214, 237-247.	4.0	34
30	A novel orally administered trimebutine compound (<scp>GIC</scp> â€1001) is antiâ€nociceptive and features peripheral opioid agonistic activity and Hydrogen Sulphideâ€releasing capacity in mice. European Journal of Pain, 2016, 20, 723-730.	2.8	26
31	Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circulation Research, 2016, 119, 1030-1038.	4.5	180
32	PAR ₂ -dependent activation of CSK3β regulates the survival of colon stem/progenitor cells. American Journal of Physiology - Renal Physiology, 2016, 311, G221-G236.	3.4	23
33	The arachidonic acid metabolite 11β-ProstaglandinF2α controls intestinal epithelial healing: deficiency in patients with Crohn's disease. Scientific Reports, 2016, 6, 25203.	3.3	35
34	184 Regulation of the Enteric Neuromotor and Sensory Functions in the Mouse With N-Arachidonoyl-Serotonin (AA-5-HT), a Dual Fatty Acid Amide Hydrolase (FAAH) Inhibitor and TRPV1 Antagonist. Gastroenterology, 2016, 150, S48.	1.3	0
35	Su1949 Protease-Activated Receptors Are Expressed and Can Be Activated in Human Sensory Neurons. Gastroenterology, 2016, 150, S596-S597.	1.3	2
36	Defects in 15-HETE Production and Control of Epithelial Permeability by Human Enteric Glial Cells From Patients With Crohn's Disease. Gastroenterology, 2016, 150, 168-180.	1.3	64

#	Article	IF	CITATIONS
37	Different activation signals induce distinct mast cell degranulation strategies. Journal of Clinical Investigation, 2016, 126, 3981-3998.	8.2	285
38	Quantification and Potential Functions of Endogenous Agonists of Transient Receptor Potential Channels in Patients With Irritable Bowel Syndrome. Gastroenterology, 2015, 149, 433-444.e7.	1.3	116
39	Alpha-2-macroglobulin loaded microcapsules enhance human leukocyte functions and innate immune response. Journal of Controlled Release, 2015, 217, 284-292.	9.9	24
40	Protective effects of nâ€6 fatty acidsâ€enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin <scp>A</scp> ₄ and its receptor. British Journal of Pharmacology, 2015, 172, 910-923.	5.4	29
41	Cytomegalovirus Infection Triggers the Secretion of the PPARÎ ³ Agonists 15-Hydroxyeicosatetraenoic Acid (15-HETE) and 13-Hydroxyoctadecadienoic Acid (13-HODE) in Human Cytotrophoblasts and Placental Cultures. PLoS ONE, 2015, 10, e0132627.	2.5	20
42	Nonredundant protective properties of FPR2/ALX in polymicrobial murine sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18685-18690.	7.1	106
43	Activation of the endogenous nociceptin system by selective nociceptin receptor agonist <scp>SCH</scp> 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrheaâ€predominant <scp>IBS</scp> . Neurogastroenterology and Motility, 2014, 26, 1539-1550.	3.0	16
44	Chronic stress mediators act synergistically on colonic nociceptive mouse dorsal root ganglia neurons to increase excitability. Neurogastroenterology and Motility, 2014, 26, 334-345.	3.0	27
45	13-HODE is the major PPARÎ ³ ligand secreted by human cytotrophoblasts upon infection by HCMV. Placenta, 2014, 35, A63-A64.	1.5	0
46	Endogenous Regulation of Visceral Pain via Production of Opioids by Colitogenic CD4+ T Cells in Mice. Gastroenterology, 2014, 146, 166-175.	1.3	80
47	Transient Receptor Potential Channels and Pain. , 2014, , 381-411.		0
48	LC–MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 932, 123-133.	2.3	172
49	A vasculo-protective circuit centered on lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 operative in murine microcirculation. Blood, 2013, 122, 608-617.	1.4	80
50	Polyunsaturated Fatty Acid Metabolism Signature in Ischemia Differs from Reperfusion in Mouse Intestine. PLoS ONE, 2013, 8, e75581.	2.5	16
51	Protease-Activated Receptors as Therapeutic Targets in Visceral Pain. Current Neuropharmacology, 2013, 11, 598-605.	2.9	26
52	Serine Protease Inhibition Reduces Post-Ischemic Granulocyte Recruitment in Mouse Intestine. American Journal of Pathology, 2012, 180, 141-152.	3.8	31
53	Sa1947 Induction of Hypoxia Inducible Factors in Macrophages Activates Wnt Signalling Pathway in Epithelial Colonic Cells. Gastroenterology, 2012, 142, S-365-S-366.	1.3	0
54	Mo1854 Quantification of Endogenous Agonist of Transient Receptor Potential (TRP) in Tissues From Irritable Bowel Syndrome (IBS) Patients. Gastroenterology, 2012, 142, S-700.	1.3	0

#	Article	IF	CITATIONS
55	Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis and Rheumatism, 2012, 64, 1848-1858.	6.7	39
56	Inhibition of sensory afferents activation and visceral pain by a brominated algal diterpene. Neurogastroenterology and Motility, 2012, 24, e336-43.	3.0	10
57	Transient Receptor Potential Vanilloid 4 Activated Inflammatory Signals by Intestinal Epithelial Cells and Colitis in Mice. Gastroenterology, 2011, 140, 275-285.e3.	1.3	125
58	Modifying the Protease, Antiprotease Pattern by Elafin Overexpression Protects Mice From Colitis. Gastroenterology, 2011, 140, 1272-1282.	1.3	102
59	Brain–Gut Interactions Increase Peripheral Nociceptive Signaling in Mice With Postinfectious Irritable Bowel Syndrome. Gastroenterology, 2011, 141, 2098-2108.e5.	1.3	75
60	Involvement of Transient Receptor Potential Vanilloid 4 (TRPV4) in Hypersensitivity Associated With Irritable Bowel Syndrome (IBS). Gastroenterology, 2011, 140, S-538.	1.3	0
61	Increased Proteolytic Activity at Mucosal Surfaces in IBD Patients: A Possible Role for Elafin. Gastroenterology, 2011, 140, S-695.	1.3	2
62	Protease-Activated Receptor 1, 2 but Not 4 Sensitizes Transient Receptor Potential Vanilloid 4 in Human Intestinal Epithelial Cells. Gastroenterology, 2011, 140, S-840.	1.3	0
63	Proteases and Inflammatory Pain. , 2011, , 253-274.		1
64	A role for transient receptor potential vanilloid 4 in tonicityâ€induced neurogenic inflammation. British Journal of Pharmacology, 2010, 159, 1161-1173.	5.4	85
65	Insulin Modulates Protease-Activated Receptor 2 Signaling: Implications for the Innate Immune Response. Journal of Immunology, 2010, 184, 2702-2709.	0.8	20
66	Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut, 2010, 59, 481-488.	12.1	130
67	PAR ₂ and Temporomandibular Joint Inflammation in the Rat. Journal of Dental Research, 2010, 89, 1123-1128.	5.2	15
68	Mutation of the Protein Kinase C Site in Borna Disease Virus Phosphoprotein Abrogates Viral Interference with Neuronal Signaling and Restores Normal Synaptic Activity. PLoS Pathogens, 2009, 5, e1000425.	4.7	30
69	Thrombin receptor: An endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain, 2009, 146, 121-129.	4.2	42
70	Development, plasticity and modulation of visceral afferents. Brain Research Reviews, 2009, 60, 171-186.	9.0	76
71	Proteaseâ€activated receptorâ€4 (PAR ₄): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterology and Motility, 2009, 21, 1189.	3.0	91
72	Analgesic properties of S100A9 Câ€ŧerminal domain: a mechanism dependent on calcium channel inhibition. Fundamental and Clinical Pharmacology, 2009, 23, 427-438.	1.9	14

#	Article	IF	CITATIONS
73	700 Protease-Activated Receptor-4 (PAR4) Activation: Evidences for Its Role and Activation in the Pathogenesis of Colitis and in Inflammatory Bowel Diseases. Gastroenterology, 2009, 136, A-110.	1.3	1
74	W1712 Protease-Activated Receptor-4 (PAR4) Inhibits Pro-Nociceptive Signals and Visceral Hypersensitivity. Gastroenterology, 2009, 136, A-722.	1.3	0
75	W1720 Intracellular Pathways Involved in Histamine and Serotonin-Induced Sensitization of Transient Receptor Potential Vanilloid Receptor 4 (TRPV4) in Colonic Sensory Neurons. Gastroenterology, 2009, 136, A-724.	1.3	0
76	Transient Receptor Potential Vanilloid-4 Has a Major Role in Visceral Hypersensitivity Symptoms. Gastroenterology, 2008, 135, 937-946.e2.	1.3	146
77	T1456 Histamine and Serotonin Sensitizes the Transient Receptor Potential Vanilloid Receptor 4 to Induce Visceral Allodynia and Hyperalgesia. Gastroenterology, 2008, 134, A-559-A-560.	1.3	3
78	Intrathecal Administration of Proteinase-Activated Receptor-2 Agonists Produces Hyperalgesia by Exciting the Cell Bodies of Primary Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 224-233.	2.5	43
79	Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. Journal of Physiology, 2007, 578, 715-733.	2.9	338
80	Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. British Journal of Pharmacology, 2007, 150, 176-185.	5.4	111
81	Colonic luminal proteases activate colonocyte proteinase-activated receptor-2 and regulate paracellular permeability in mice. Neurogastroenterology and Motility, 2007, 19, 57-65.	3.0	45
82	Role for protease activity in visceral pain in irritable bowel syndrome. Journal of Clinical Investigation, 2007, 117, 636-647.	8.2	490
83	Protective Effect of Proteinase-Activated Receptor 2 Activation on Motility Impairment and Tissue Damage Induced by Intestinal Ischemia/Reperfusion in Rodents. American Journal of Pathology, 2006, 169, 177-188.	3.8	48
84	323 THROMBIN RECEPTOR PROTEASE-ACTIVATED RECEPTOR-4 (PAR4) MODULATES NOCICEPTIVE SIGNAL IN VIVO AND IN SENSORY NEURONS. European Journal of Pain, 2006, 10, S86b-S86.	2.8	0
85	337 IMPLICATION OF TRPV4 IN VISCERAL SENSITIVITY. European Journal of Pain, 2006, 10, S90a-S90.	2.8	0
86	The C-terminus of murine S100A9 protein inhibits hyperalgesia induced by the agonist peptide of protease-activated receptor 2 (PAR2). British Journal of Pharmacology, 2006, 149, 374-384.	5.4	8
87	Proteinase-activated Receptor-1 is an Anti-Inflammatory Signal for Colitis Mediated by a Type 2 Immune Response. Inflammatory Bowel Diseases, 2005, 11, 792-798.	1.9	56
88	Proteases and Protease-Activated Receptors (PARs): Novel Signals for Pain. Current Topics in Medicinal Chemistry, 2005, 5, 569-576.	2.1	13
89	PAR2activation alters colonic paracellular permeability in mice via IFN-Î ³ -dependent and -independent pathways. Journal of Physiology, 2004, 558, 913-925.	2.9	121
90	Delayed rectal hypersensitivity to intracolonic par2-activating peptide and taurocholate 1s linked to increased epithelial paracellular permeability in rats. Gastroenterology, 2003, 124, A250.	1.3	2

#	Article	IF	CITATIONS
91	A pivotal role of IFN-gamma and myosin light chain kinase in stress-induced impairment of the colonic epithelial barrier in mice. Gastroenterology, 2003, 124, A315.	1.3	2
92	Stress-induced disruption of colonic epithelial barrier: role of interferon-γ and myosin light chain kinase in mice. Gastroenterology, 2003, 125, 795-804.	1.3	182
93	Colitis induced by proteinase-activated receptor-2 agonists is mediated by a neurogenic mechanism. Canadian Journal of Physiology and Pharmacology, 2003, 81, 920-927.	1.4	81
94	IFNÎ ³ and mast cells are responsible for delayed changes in colonic paracellular permeability induced by acute stress. Gastroenterology, 2003, 124, A318.	1.3	0
95	Proteinase-Activated Receptor-2-Induced Colonic Inflammation in Mice: Possible Involvement of Afferent Neurons, Nitric Oxide, and Paracellular Permeability. Journal of Immunology, 2003, 170, 4296-4300.	0.8	133
96	Induction of Intestinal Inflammation in Mouse by Activation of Proteinase-Activated Receptor-2. American Journal of Pathology, 2002, 161, 1903-1915.	3.8	342
97	Activation of proteinase-activated receptor-2 by the peptide SLIGRL or trypsin induces inflammation of mouse colon. Gastroenterology, 2001, 120, A725.	1.3	Ο
98	Activation of proteinase-activated receptor-2 by the peptide SLIGRL or trypsin induces inflammation of mouse colon. Gastroenterology, 2001, 120, A725-A725.	1.3	1