
Mark R Salvatore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138435/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus, 2017, 288, 265-283.	2.5	96
2	Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006306.	3.6	86
3	Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of <i>Curiosity</i> 's Exploration Campaign. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006527.	3.6	69
4	The geological history of Northeast Syrtis Major, Mars. Icarus, 2017, 293, 66-93.	2.5	62
5	Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology, 2014, 42, 423-426.	4.4	60
6	Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 2019, 321, 619-631.	2.5	52
7	Bulk mineralogy of the NE Syrtis and Jezero crater regions of Mars derived through thermal infrared spectral analyses. Icarus, 2018, 301, 76-96.	2.5	51
8	Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars. Geochimica Et Cosmochimica Acta, 2013, 115, 137-161.	3.9	50
9	The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006320.	3.6	41
10	On the origin of the Vastitas Borealis Formation in Chryse and Acidalia Planitiae, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2437-2456.	3.6	32
11	Analyses of Highâ€Iron Sedimentary Bedrock and Diagenetic Features Observed With ChemCam at Vera Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006314.	3.6	30
12	Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006299.	3.6	30
13	Integrating CRISM and TES hyperspectral data to characterize a halloysite-bearing deposit in Kashira crater, Mars. Icarus, 2015, 250, 165-187.	2.5	27
14	Synergistic Ground and Orbital Observations of Iron Oxides on Mt. Sharp and Vera Rubin Ridge. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006294.	3.6	27
15	Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditionsÂ. American Mineralogist, 2014, 99, 1821-1833.	1.9	23
16	Xâ€Ray Amorphous Components in Sedimentary Rocks of Gale Crater, Mars: Evidence for Ancient Formation and Longâ€Lived Aqueous Activity. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006782.	3.6	22
17	Remote characterization of photosynthetic communities in the Fryxell basin of Taylor Valley, Antarctica. Antarctic Science, 2020, 32, 255-270.	0.9	19
18	The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses. Earth and Planetary Science Letters, 2014, 404, 261-272.	4.4	18

MARK R SALVATORE

#	Article	IF	CITATIONS
19	Alteration of immature sedimentary rocks on Earth and Mars: Recording aqueous and surface–atmosphere processes. Earth and Planetary Science Letters, 2015, 417, 78-86.	4.4	18
20	Hydrothermal alteration and diagenesis of terrestrial lacustrine pillow basalts: Coordination of hyperspectral imaging with laboratory measurements. Geochimica Et Cosmochimica Acta, 2015, 171, 174-200.	3.9	18
21	Estimating microbial mat biomass in the McMurdo Dry Valleys, Antarctica using satellite imagery and ground surveys. Polar Biology, 2020, 43, 1753-1767.	1.2	16
22	High-resolution compositional remote sensing of the Transantarctic Mountains: application to the WorldView-2 dataset. Antarctic Science, 2015, 27, 473-491.	0.9	14
23	Characterization of spectral and geochemical variability within the Ferrar Dolerite of the McMurdo Dry Valleys, Antarctica: weathering, alteration, and magmatic processes. Antarctic Science, 2014, 26, 49-68.	0.9	13
24	The geologic history of Margaritifer basin, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 273-295.	3.6	12
25	Xâ€Ray Amorphous Sulfurâ€Bearing Phases in Sedimentary Rocks of Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	10
26	Mars analog minerals' spectral reflectance characteristics under Martian surface conditions. Icarus, 2018, 306, 50-73.	2.5	9
27	Investigating the role of anhydrous oxidative weathering on sedimentary rocks in the Transantarctic Mountains and implications for the modern weathering of sedimentary lithologies on Mars. Icarus, 2019, 319, 669-684.	2.5	8
28	Characterizing clay mineralogy in Lake Towuti, Indonesia, with reflectance spectroscopy. Journal of Paleolimnology, 2015, 54, 253-261.	1.6	5
29	A Complex Fluviolacustrine Environment on Early Mars and Its Astrobiological Potentials. Astrobiology, 2018, 18, 1081-1091.	3.0	5
30	Counting Carbon: Quantifying Biomass in the McMurdo Dry Valleys through Orbital & Field Observations. International Journal of Remote Sensing, 2021, 42, 8597-8623.	2.9	5
31	The McMurdo Dry Valleys of Antarctica: a geological, environmental, and ecological analog to the Martian surface and near surface. , 2021, , 291-332.		4
32	Evaluating Alternative Metacommunity Hypotheses for Diatoms in the McMurdo Dry Valleys Using Simulations and Remote Sensing Data. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	1
33	Modeling Colonial Paternalism: GIS and Multispectral Satellite Imagery at Kingstown, British Virgin Islands. American Antiquity, 2021, 86, 734-751.	1.1	1