List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of temperature on the low-velocity impact response of environmentally friendly cork sandwich structures. Journal of Sandwich Structures and Materials, 2022, 24, 1099-1121.	3.5	7
2	Modelling of carbon/epoxy sandwich panels with agglomerated cork core subjected to impact loads. International Journal of Impact Engineering, 2022, 159, 104047.	5.0	9
3	Experimental and numerical analysis of the ballistic response of agglomerated cork and its bio-based sandwich structures. Engineering Failure Analysis, 2022, 131, 105904.	4.0	9
4	Temperature, strain rate and anisotropy effects on compressive response of natural and synthetic cellular core materials. Composite Structures, 2021, 260, 113268.	5.8	5
5	Compression impact behaviour of agglomerated cork at intermediate strain rates. European Journal of Wood and Wood Products, 2021, 79, 381-396.	2.9	6
6	Assessment of agglomerated corks and PVC foams cores crashworthiness under multiple-impact events in different loading conditions. Polymer Testing, 2021, 96, 107061.	4.8	8
7	Analysis of the influence of ply-orientation in delamination progression in composites laminates using the Serial/Parallel Mixing Theory. Composites Science and Technology, 2021, 211, 108847.	7.8	2
8	Failure maps of biocomposites mechanical joints reinforced with natural fibres. Composites Part C: Open Access, 2021, 5, 100159.	3.2	1
9	Experimental and finite element analysis of the impact response of agglomerated cork and its intraply hybrid flax/basalt sandwich structures. Composite Structures, 2021, 272, 114210.	5.8	6
10	Experimental study of the impact behavior of repaired thin laminates with double composite patch. Mechanics of Advanced Materials and Structures, 2020, 27, 1701-1708.	2.6	17
11	Impact behavior of sandwich structures made of flax/epoxy face sheets and agglomerated cork. Journal of Natural Fibers, 2020, 17, 168-188.	3.1	22
12	Analysis of damage and interlaminar stresses in laminate plates with interacting holes. International Journal of Mechanical Sciences, 2020, 165, 105189.	6.7	6
13	The High-Velocity Impact Behaviour of Kevlar Composite Laminates Filled with Cork Powder. Applied Sciences (Switzerland), 2020, 10, 6108.	2.5	11
14	High-velocity impact behaviour of damaged sandwich plates with agglomerated cork core. Composite Structures, 2020, 248, 112520.	5.8	24
15	Design tool to predict the open-hole failure strength of composite laminates subjected to in-plane loads. Composite Structures, 2020, 238, 111970.	5.8	11
16	Impact response of repaired sandwich structures. Polymer Composites, 2020, 41, 3014-3022.	4.6	9
17	Analysis of the impact location on damage tolerance of bonded-repaired composite laminates. Polymer Testing, 2019, 78, 106000.	4.8	11
18	Numerical analysis of interlaminar stresses in open-hole laminates under compression. Composite Structures, 2019, 217, 89-99.	5.8	14

#	Article	IF	CITATIONS
19	The Potential of Agglomerated Cork for Sandwich Structures: A Systematic Investigation of Physical, Thermal, and Mechanical Properties. Polymers, 2019, 11, 2118.	4.5	16
20	Matrix cracking evolution in open-hole laminates subjected to thermo-mechanical loads. Composite Structures, 2018, 183, 510-520.	5.8	18
21	Influence of ply orientation on free-edge effects in laminates subjected to in-plane loads. Composites Part B: Engineering, 2018, 153, 149-158.	12.0	18
22	High velocity impact behaviour of hybrid basalt-carbon/epoxy composites. Composite Structures, 2017, 168, 305-312.	5.8	78
23	Influence of ply cluster thickness and location on matrix cracking evolution in open-hole composite laminates. Composites Part B: Engineering, 2016, 95, 40-47.	12.0	24
24	Stiffness control in adaptive thin-walled laminate composite beams. Composites Part A: Applied Science and Manufacturing, 2016, 80, 118-126.	7.6	2
25	A new device for determining the compression after impact strength in thin laminates. Composite Structures, 2015, 127, 99-107.	5.8	39
26	Experimental response of agglomerated cork under multi-impact loads. Materials Letters, 2015, 160, 327-330.	2.6	31
27	Damage evolution in open-hole laminated composite plates subjected to in-plane loads. Composite Structures, 2015, 133, 1048-1057.	5.8	38
28	Dynamic crushing behaviour of agglomerated cork. Materials & Design, 2015, 65, 743-748.	5.1	38
29	Damage in preloaded glass/vinylester composite panels subjected to high-velocity impacts. Mechanics Research Communications, 2014, 55, 66-71.	1.8	18
30	An analytical model for the secondary bending prediction in single-lap composite bolted-joints. Composite Structures, 2014, 111, 354-361.	5.8	64
31	Analytical study of the low-velocity impact response of composite sandwich beams. Composite Structures, 2014, 111, 459-467.	5.8	26
32	An analytical model for predicting the stiffness and strength of pinned-joint composite laminates. Composites Science and Technology, 2014, 90, 67-73.	7.8	38
33	Analysis of damage localization in composite laminates using a discrete damage model. Composites Part B: Engineering, 2014, 66, 224-232.	12.0	37
34	Influence of shear plugging in the energy absorbed by thin carbon-fibre laminates subjected to high-velocity impacts. Composites Part B: Engineering, 2013, 49, 86-92.	12.0	24
35	Perforation of Composite Laminate Subjected to Dynamic Loads. Solid Mechanics and Its Applications, 2013, , 291-337.	0.2	4
36	Influence of areal density on the energy absorbed by thin composite plates subjected to high-velocity impacts. Journal of Strain Analysis for Engineering Design, 2012, 47, 444-452.	1.8	17

#	Article	IF	CITATIONS
37	Nondimensional analysis of ballistic impact on thin woven laminate plates. International Journal of Impact Engineering, 2012, 39, 8-15.	5.0	22
38	Polypropylene/Hemp Fabric Reinforced Composites: Manufacturing and Mechanical Behaviour. Journal of Biobased Materials and Bioenergy, 2012, 6, 361-369.	0.3	5
39	Experimental study of agglomerated-cork-cored structures subjected to ballistic impacts. Materials Letters, 2011, 65, 2152-2154.	2.6	27
40	Behavior of sandwich structures and spaced plates subjected to highâ€velocity impacts. Polymer Composites, 2011, 32, 290-296.	4.6	27
41	Numerical modelling of foam-cored sandwich plates under high-velocity impact. Composite Structures, 2011, 93, 2392-2399.	5.8	71
42	Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact. Mechanics Research Communications, 2011, 38, 404-407.	1.8	18
43	Experimental analysis of perforation of glass/polyester structures subjected to high-velocity impact. Materials Letters, 2010, 64, 1052-1054.	2.6	29
44	Residual flexural strength after low-velocity impact in glass/polyester composite beams. Composite Structures, 2010, 92, 25-30.	5.8	70
45	Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Composite Structures, 2010, 92, 2090-2096.	5.8	163
46	A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams. Composite Structures, 2010, 92, 2406-2414.	5.8	48
47	Impact behaviour of preloaded glass/polyester woven plates. Composites Science and Technology, 2009, 69, 711-717.	7.8	45
48	Impact Load Behaviour of Resin Transfer Moulding (RTM) Hemp Fibre Composite Laminates. Journal of Biobased Materials and Bioenergy, 2009, 3, 298-310.	0.3	27
49	Modelling of the failure of carbon-fibre laminates subjected to dynamic loads. , 2009, , .		0
50	Dynamic analysis of bending–torsion coupled composite beams using the Flexibility Influence Function Method. International Journal of Mechanical Sciences, 2008, 50, 1611-1618.	6.7	18
51	Compressive residual strength at low temperatures of composite laminates subjected to low-velocity impacts. Composite Structures, 2008, 85, 226-232.	5.8	67
52	Analysis of the dynamic flexural behaviour of composite beams at low temperature. Composites Science and Technology, 2007, 67, 2616-2632.	7.8	26
53	Application of the flexibility influence function method in the dynamic analysis of composite beams. International Journal of Solids and Structures, 2007, 44, 4795-4809.	2.7	6
54	Response of pre-loaded laminate composite plates subject to high velocity impact. European Physical Journal Special Topics, 2006, 134, 1257-1263.	0.2	13

#	Article	IF	CITATIONS
55	Compression after impact of thin composite laminates. Composites Science and Technology, 2005, 65, 1911-1919.	7.8	206
56	Damage in CFRPs due to low velocity impact at low temperature. Composites Part B: Engineering, 2005, 36, 41-50.	12.0	163
57	Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar. Composites Science and Technology, 2005, 65, 61-71.	7.8	85
58	Static behavior of CFRPs at low temperatures. Composites Part B: Engineering, 2002, 33, 383-390.	12.0	39
59	Caracterización dinámica mediante barra Hopkinson de materiales cerámicos monolÃŧicos y compuestos. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2002, 41, 333-337.	1.9	1
60	Statistical distribution of the estimator of Weibull modulus. Journal of Materials Science Letters, 2001, 20, 847-849.	0.5	15
61	Statistical analysis of the mechanical properties of composite materials. Composites Part B: Engineering, 2000, 31, 375-381.	12.0	98
62	On the estimation of percentiles of the Weibull distribution. Journal of Materials Science Letters, 1999, 18, 1441-1443.	0.5	11
63	The effects of water absorption and salt fog exposure on agglomerated cork compressive response. European Journal of Wood and Wood Products, 0, , 1.	2.9	2