Erica L Scheller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3138218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nature Biomedical Engineering, 2021, 5, 64-76.	22.5	173
2	Neuroskeletal Effects of Chronic Bioelectric Nerve Stimulation in Health and Diabetes. Frontiers in Neuroscience, 2021, 15, 632768.	2.8	1
3	Neural regulation of bone marrow adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101522.	4.7	12
4	Report From the 6th International Meeting on Bone Marrow Adiposity (BMA2020). Frontiers in Endocrinology, 2021, 12, 712088.	3.5	3
5	A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. ELife, 2021, 10, .	6.0	24
6	Refreshable Nanobiosensor Based on Organosilica Encapsulation of Biorecognition Elements. ACS Applied Materials & Interfaces, 2020, 12, 5420-5428.	8.0	6
7	MarrowQuant Across Aging and Aplasia: A Digital Pathology Workflow for Quantification of Bone Marrow Compartments in Histological Sections. Frontiers in Endocrinology, 2020, 11, 480.	3.5	22
8	Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nature Communications, 2020, 11, 3097.	12.8	98
9	Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2020, 11, 65.	3.5	53
10	A Neuroskeletal Atlas: Spatial Mapping and Contextualization of Axon Subtypes Innervating the Long Bones of C3H and B6 Mice. Journal of Bone and Mineral Research, 2020, 36, 1012-1025.	2.8	29
11	Peripheral Neuropathy as a Component of Skeletal Disease in Diabetes. Current Osteoporosis Reports, 2019, 17, 256-269.	3.6	24
12	Congenital lipodystrophy induces severe osteosclerosis. PLoS Genetics, 2019, 15, e1008244.	3.5	32
13	Nerves in Bone: Evolving Concepts in Pain and Anabolism. Journal of Bone and Mineral Research, 2019, 34, 1393-1406.	2.8	116
14	Shared Autonomic Pathways Connect Bone Marrow and Peripheral Adipose Tissues Across the Central Neuraxis. Frontiers in Endocrinology, 2019, 10, 668.	3.5	25
15	Exploiting Self-Capacitances for Wireless Power Transfer. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 425-434.	4.0	5
16	Effects of High-Fat Diet and Body Mass on Bone Morphology and Mechanical Properties in 1100 Advanced Intercross Mice. Journal of Bone and Mineral Research, 2019, 34, 711-725.	2.8	28
17	Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Scientific Reports, 2019, 9, 17427.	3.3	22
18	Novel leptin receptor signaling mutants identify location and sexâ€dependent modulation of bone density, adiposity, and growth. Journal of Cellular Biochemistry, 2019, 120, 4398-4408.	2.6	9

ERICA L SCHELLER

#	Article	IF	CITATIONS
19	Characterization of the bone marrow adipocyte niche with three-dimensional electron microscopy. Bone, 2019, 118, 89-98.	2.9	83
20	Bone marrow adipocytes resist lipolysis and remodeling in response to β-adrenergic stimulation. Bone, 2019, 118, 32-41.	2.9	86
21	Glucocorticoid Receptor Signaling Is Not Required for In Vivo Adipogenesis. Endocrinology, 2018, 159, 2050-2061.	2.8	26
22	Molecular Differences Between Subtypes of Bone Marrow Adipocytes. Current Molecular Biology Reports, 2018, 4, 16-23.	1.6	39
23	Development, regulation, metabolism and function of bone marrow adipose tissues. Bone, 2018, 110, 134-140.	2.9	98
24	Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biology, 2018, 67, 1-14.	3.6	10
25	Molecular differences between subtypes of bone marrow adipocytes. Current Molecular Biology Reports, 2018, 4, 16-23.	1.6	18
26	Evolution of the Marrow Adipose Tissue Microenvironment. Calcified Tissue International, 2017, 100, 461-475.	3.1	23
27	Editorial: Bone Marrow Adipose Tissue: Formation, Function, and Impact on Health and Disease. Frontiers in Endocrinology, 2017, 8, 112.	3.5	33
28	Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice. Frontiers in Endocrinology, 2016, 7, 87.	3.5	16
29	Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Frontiers in Endocrinology, 2016, 7, 102.	3.5	90
30	Increased Circulating Adiponectin in Response to Thiazolidinediones: Investigating the Role of Bone Marrow Adipose Tissue. Frontiers in Endocrinology, 2016, 7, 128.	3.5	32
31	Marrow Adipose Tissue: Trimming the Fat. Trends in Endocrinology and Metabolism, 2016, 27, 392-403.	7.1	171
32	Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte, 2016, 5, 251-269.	2.8	61
33	Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology, 2016, 157, 508-521.	2.8	114
34	A suspected dental cellulitis leading to diagnosis of both herpes zoster ophthalmicus and HIV. Oral and Maxillofacial Surgery Cases, 2015, 1, 5-7.	0.4	1
35	The use of nano-computed tomography to enhance musculoskeletal research. Connective Tissue Research, 2015, 56, 106-119.	2.3	37
36	Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nature Communications, 2015, 6, 7808.	12.8	332

ERICA L SCHELLER

#	Article	IF	CITATIONS
37	What's the matter with MAT? Marrow adipose tissue, metabolism, and skeletal health. Annals of the New York Academy of Sciences, 2014, 1311, 14-30.	3.8	193
38	Use of Osmium Tetroxide Staining with Microcomputerized Tomography to Visualize and Quantify Bone Marrow Adipose Tissue In Vivo. Methods in Enzymology, 2014, 537, 123-139.	1.0	136
39	Plasma Fluoride Level as a Predictor of Voriconazole-Induced Periostitis in Patients With Skeletal Pain. Clinical Infectious Diseases, 2014, 59, 1237-1245.	5.8	65
40	Bone Marrow Adipose Tissue Is an Endocrine Organ that Contributes to Increased Circulating Adiponectin during Caloric Restriction. Cell Metabolism, 2014, 20, 368-375.	16.2	415
41	Administration of Saccharin to Neonatal Mice Influences Body Composition of Adult Males and Reduces Body Weight of Females. Endocrinology, 2014, 155, 1313-1326.	2.8	21
42	The Use of NanoComputed Tomography to Enhance Musculoskeletal Research. Microscopy and Microanalysis, 2014, 20, 776-777.	0.4	0
43	Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass. PLoS ONE, 2014, 9, e86454.	2.5	52
44	Synchronous ipsilateral sebaceous lymphadenoma and membranous basal cell adenoma of the parotid. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115, e41-e46.	0.4	12
45	Marrow Fat and Bone—New Perspectives. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 935-945.	3.6	319
46	Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. Journal of Biological Chemistry, 2013, 288, 32475-32489.	3.4	110
47	Development, Disease, and Regeneration of Tissues in the Dental-Craniofacial Complex. BioMed Research International, 2013, 2013, 1-3.	1.9	3
48	A Potential Role for the Myeloid Lineage in Leptin-regulated Bone Metabolism. Hormone and Metabolic Research, 2012, 44, 01-05.	1.5	16
49	Gene Therapy. Journal of Craniofacial Surgery, 2012, 23, 333-337.	0.7	21
50	Adipose tissue stem cells: the great WAT hope. Trends in Endocrinology and Metabolism, 2012, 23, 270-277.	7.1	88
51	Adipose tissue stem cells meet preadipocyte commitment: going back to the future. Journal of Lipid Research, 2012, 53, 227-246.	4.2	339
52	Leptin Does Not Directly Affect CNS Serotonin Neurons to Influence Appetite. Cell Metabolism, 2011, 13, 584-591.	16.2	67
53	Zoledronic acid inhibits macrophage SOCS3 expression and enhances cytokine production. Journal of Cellular Biochemistry, 2011, 112, 3364-3372.	2.6	31
54	Bisphosphonates Inhibit Expression of p63 by Oral Keratinocytes. Journal of Dental Research, 2011, 90, 894-899.	5.2	28

4

ERICA L SCHELLER

#	Article	IF	CITATIONS
55	Ectopic Expression of Col2.3 and Col3.6 Promoters in the Brain and Association with Leptin Signaling. Cells Tissues Organs, 2011, 194, 268-273.	2.3	23
56	The use of soluble signals to harness the power of the bone microenvironment for implant therapeutics. International Journal of Oral and Maxillofacial Implants, 2011, 26 Suppl, 70-9; discussion 80-4.	1.4	1
57	The effects of Runx2 immobilization on poly (É-caprolactone) on osteoblast differentiation of bone marrow stromal cells in vitro. Biomaterials, 2010, 31, 3231-3236.	11.4	35
58	Leptin Functions Peripherally to Regulate Differentiation of Mesenchymal Progenitor Cells. Stem Cells, 2010, 28, 1071-1080.	3.2	95
59	Ability of Dental Students to Deliver Oxygen in a Medical Emergency. Journal of Dental Education, 2009, 73, 499-508.	1.2	24
60	Tissue engineering: state of the art in oral rehabilitation. Journal of Oral Rehabilitation, 2009, 36, 368-389.	3.0	142
61	Gene Therapy: Design and Prospects for Craniofacial Regeneration. Journal of Dental Research, 2009, 88, 585-596.	5.2	66
62	Wnt/β-catenin Inhibits Dental Pulp Stem Cell Differentiation. Journal of Dental Research, 2008, 87, 126-130.	5.2	127