
Martin Zimmer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3137500/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lignocellulose degradation mechanisms across the Tree of Life. Current Opinion in Chemical Biology, 2015, 29, 108-119.	6.1	478
2	WRACK DEPOSITION ON DIFFERENT BEACH TYPES: SPATIAL AND TEMPORAL VARIATION IN THE PATTERN OF SUBSIDY. Ecology, 2005, 86, 1496-1507.	3.2	203
3	Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biological Reviews, 2002, 77, 455-493.	10.4	200
4	Hostâ€specificity of environmentally transmitted <i>Mycoplasma</i> â€like isopod symbionts. Environmental Microbiology, 2008, 10, 2497-2504.	3.8	103
5	Feeding preferences of supralittoral isopods and amphipods. Canadian Journal of Zoology, 2000, 78, 1918-1929.	1.0	97
6	Diet choice in an omnivorous salt-marsh crab: different food types, body size, and habitat complexity. Journal of Experimental Marine Biology and Ecology, 2003, 292, 103-116.	1.5	85
7	Microorganisms and Cellulose Digestion in the Gut of the Woodlouse Porcellio scaber. Journal of Chemical Ecology, 1998, 24, 1397-1408.	1.8	82
8	" <i>Candidatus</i> Hepatoplasma crinochetorum,―a New, Stalk-Forming Lineage of <i>Mollicutes</i> Colonizing the Midgut Glands of a Terrestrial Isopod. Applied and Environmental Microbiology, 2004, 70, 6166-6172.	3.1	81
9	The Terrestrial Isopod Microbiome: An All-in-One Toolbox for Animal–Microbe Interactions of Ecological Relevance. Frontiers in Microbiology, 2016, 7, 1472.	3.5	79
10	Is decomposition of woodland leaf litter influenced by its species richness?. Soil Biology and Biochemistry, 2002, 34, 277-284.	8.8	75
11	Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiology Ecology, 2007, 61, 141-152.	2.7	72
12	Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Marine Ecology - Progress Series, 2006, 328, 155-160.	1.9	70
13	Do woodlice and earthworms interact synergistically in leaf litter decomposition?. Functional Ecology, 2005, 19, 7-16.	3.6	69
14	Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia, 2013, 172, 667-677.	2.0	67
15	Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)?. Biology and Fertility of Soils, 1997, 24, 435-441.	4.3	66
16	? Candidatus Hepatincola porcellionum? gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Archives of Microbiology, 2004, 181, 299-304.	2.2	64
17	Molecular Characterization and Evolution of Arthropod-Pathogenic Rickettsiella Bacteria. Applied and Environmental Microbiology, 2007, 73, 5045-5047.	3.1	64
18	Priorities for research in soil ecology. Pedobiologia, 2017, 63, 1-7.	1.2	64

#	Article	IF	CITATIONS
19	Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Marine Biology, 2001, 138, 955-963.	1.5	62
20	Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology - Progress Series, 2012, 450, 1-10.	1.9	62
21	Leaf litter-colonizing microbiota: supplementary food source or indicator of food quality for Porcellio scaber (Isopoda: Oniscidea)?. European Journal of Soil Biology, 2003, 39, 209-216.	3.2	61
22	The Fate and Effects of Ingested Hydrolyzable Tannins in Porcellio scaber. Journal of Chemical Ecology, 1999, 25, 611-628.	1.8	60
23	Salt marsh litter and detritivores: A closer look at redundancy. Estuaries and Coasts, 2004, 27, 753-769.	1.7	58
24	Species-specific patterns of litter processing by terrestrial isopods (Isopoda: Oniscidea) in high intertidal salt marshes and coastal forests. Functional Ecology, 2002, 16, 596-607.	3.6	57
25	The value of small mangrove patches. Science, 2019, 363, 239-239.	12.6	54
26	Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 2000, 69, 1071-1082.	2.8	53
27	Latitudinal variation in plant–herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	2.7	52
28	Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications, 2021, 12, 3875.	12.8	52
29	Bacterial endosymbionts in <i>Asellus aquaticus</i> (Isopoda) and <i>Gammarus pulex</i> (Amphipoda) and their contribution to digestion. Limnology and Oceanography, 2003, 48, 2208-2213.	3.1	50
30	Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Marine Biology, 2002, 140, 1207-1213.	1.5	49
31	Selective consumption and digestion of litter microbes by Porcellio scaber (Isopoda: Oniscidea). Pedobiologia, 2008, 51, 335-342.	1.2	47
32	Effects of elevated seawater p CO2 on gene expression patterns in the gills of the green crab, Carcinus maenas. BMC Genomics, 2011, 12, 488.	2.8	46
33	Relationships between woodlice (Isopoda: Oniscidea) and microbial density and activity in the field. Biology and Fertility of Soils, 1999, 30, 117-123.	4.3	43
34	The role of coprophagy in nutrient release from feces of phytophagous insects. Soil Biology and Biochemistry, 2002, 34, 1093-1099.	8.8	41
35	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. MSystems, 2020, 5, .	3.8	40
36	ls activated hemocyanin instead of phenoloxidase involved in immune response in woodlice?. Developmental and Comparative Immunology, 2009, 33, 1055-1063.	2.3	39

#	Article	IF	CITATIONS
37	Responses of the parthenogenetic isopod, Trichoniscus pusillus (Isopoda: Oniscidea), to changes in food quality. Pedobiologia, 2000, 44, 75-85.	1.2	35
38	Sub-littoral and supra-littoral amphipods respond differently to acute thermal stress. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 155, 413-418.	1.6	35
39	Drowned or Dry: A Cross-Habitat Comparison of Detrital Breakdown Processes. Ecosystems, 2012, 15, 477-491.	3.4	35
40	Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2005, 175, 275-283.	1.5	34
41	Public Perceptions of Mangrove Forests Matter for Their Conservation. Frontiers in Marine Science, 2020, 7, .	2.5	32
42	Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy?. Soil Biology and Biochemistry, 2002, 34, 1253-1259.	8.8	31
43	Courtship in long-legged flies (Diptera: Dolichopodidae): function and evolution of signals. Behavioral Ecology, 2003, 14, 526-530.	2.2	31
44	Detrital subsidy to the supratidal zone provides feeding habitat for intertidal crabs. Estuaries and Coasts, 2007, 30, 451-458.	2.2	31
45	Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change. Journal of Sea Research, 2017, 128, 92-97.	1.6	31
46	Muddy Waters: Unintentional Consequences of Blue Carbon Research Obscure Our Understanding of Organic Carbon Dynamics in Seagrass Ecosystems. Frontiers in Marine Science, 2017, 4, .	2.5	30
47	Surfactants in the gut fluids of Porcellio scaber (Isopoda: Oniscidea), and their interactions with phenolics. Journal of Insect Physiology, 1997, 43, 1009-1014.	2.0	27
48	Wind-Driven Dynamics of Beach-Cast Wrack in a Tide-Free System. Open Journal of Marine Science, 2014, 04, 68-79.	0.5	27
49	Suppression of Soil Microorganisms by Emissions of a Magnesite Plant in the Slovak Republic. Water, Air, and Soil Pollution, 2001, 125, 121-132.	2.4	25
50	Plant species- and stage-specific differences in microbial decay of mangrove leaf litter: the older the better?. Oecologia, 2021, 195, 843-858.	2.0	25
51	Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. Pedobiologia, 2000, 44, 695-704.	1.2	24
52	Effects of temperature and precipitation on a flood plain isopod community: a field study. European Journal of Soil Biology, 2004, 40, 139-146.	3.2	24
53	Intertidal coarse woody debris: A spatial subsidy as shelter or feeding habitat for gastropods?. Estuarine, Coastal and Shelf Science, 2006, 66, 197-203.	2.1	24
54	Colonisation of Beach-Cast Macrophyte Wrack Patches by Talitrid Amphipods: A Primer. Estuaries and Coasts, 2011, 34, 863-871.	2.2	24

#	Article	IF	CITATIONS
55	Litter traits and palatability to detritivores: a case study across bio-geographical boundaries. Nauplius, 2014, 22, 103-111.	0.3	24
56	Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: a multi-parameter approach. Oecologia, 2015, 178, 999-1015.	2.0	23
57	Combined methods for the determination of microbial activity of leaf litter. European Journal of Soil Biology, 1998, 34, 105-110.	3.2	22
58	Metabolic and oxidative stress responses of the jellyfish Cassiopea sp.to changes in seawater temperature. Journal of Sea Research, 2019, 145, 1-7.	1.6	21
59	Numerical modelling of hydraulics and sediment dynamics around mangrove seedlings: Implications for mangrove establishment and reforestation. Estuarine, Coastal and Shelf Science, 2019, 217, 81-95.	2.1	21
60	Leaf Toughness. , 2005, , 121-125.		21
61	Reproductive patterns in syntopic terrestrial isopod species (Crustacea, Isopoda, Oniscidea) from Morocco. Pedobiologia, 2008, 52, 127-137.	1.2	20
62	Different natural organic matter isolates cause similar stress response patterns in the freshwater amphipod, Gammarus pulex. Environmental Science and Pollution Research, 2010, 17, 261-269.	5.3	20
63	Balancing nutritional requirements for copper in the common woodlouse, Porcellio scaber (Isopoda:) Tj ETQq1 1	0.784314 4.3	rgBT /Overlo
64	Amphipod diversity at three Tunisian lagoon complexes in relation to environmental conditions. Journal of Natural History, 2013, 47, 2849-2868.	0.5	18
65	Can terrestrial isopods (Isopoda: Oniscidea) make use of biodegradable plastics?. Applied Soil Ecology, 2014, 77, 72-79.	4.3	18
66	Decomposition of Leaf Litter in a U.S. Saltmarsh is Driven by Dominant Species, Not Species Complementarity. Wetlands, 2013, 33, 83-89.	1.5	17
67	Questions and possible new directions for research into the biology of terrestrial isopods. European Journal of Soil Biology, 2005, 41, 57-61.	3.2	16
68	Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). Journal of Experimental Marine Biology and Ecology, 2014, 455, 22-28.	1.5	16
69	Biodiversity of Talitridae family (Crustacea, Amphipoda) in some Tunisian coastal lagoons. Zoological Studies, 2015, 54, e17.	0.3	16
70	Hierarchical toolbox: Ensuring scientific accuracy of citizen science for tropical coastal ecosystems. Ecological Indicators, 2016, 66, 242-250.	6.3	16
71	Effects of warming, nutrient enrichment and detritivore presence on litter breakdown and associated microbial decomposers in a simulated temperate woodland creek. Hydrobiologia, 2016, 770, 243-256.	2.0	15
72	Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases?. Biology and Fertility of Soils, 1997, 26, 155-156.	4.3	14

Martin Zimmer

#	Article	IF	CITATIONS
73	The influence of crab burrows on sediment salinity in a Rhizophora-dominated mangrove forest in North Brazil during the dry season. Hydrobiologia, 2017, 803, 295-305.	2.0	14
74	Dataset of "true mangroves" plant species traits. Biodiversity Data Journal, 2017, 5, e22089.	0.8	14
75	Influence of Changing Plant Food Sources on the Gut Microbiota of Saltmarsh Detritivores. Microbial Ecology, 2012, 64, 814-825.	2.8	13
76	A Space-For-Time approach to study the effects of increasing temperature on leaf litter decomposition under natural conditions. Soil Biology and Biochemistry, 2018, 123, 250-256.	8.8	12
77	Discovery of a multispecies shark aggregation and parturition area in the Ba Estuary, Fiji Islands. Ecology and Evolution, 2018, 8, 7079-7093.	1.9	12
78	Postembryonic ontogenetic development in <i>Porcellio scaber</i> (Isopoda: Oniscidea): the significance of food. Invertebrate Reproduction and Development, 2002, 42, 75-82.	0.8	11
79	Degradation of Leaf Litter Phenolics by Aquatic and Terrestrial Isopods. Journal of Chemical Ecology, 2005, 31, 1933-1952.	1.8	11
80	Ecosystem Design: When Mangrove Ecology Meets Human Needs. Coastal Research Library, 2018, , 367-376.	0.4	11
81	Interactive effects of temperature and nutrients on mangrove seedling growth and implications for establishment. Marine Environmental Research, 2019, 151, 104750.	2.5	11
82	Sources of Particulate Organic Matter across Mangrove Forests and Adjacent Ecosystems in Different Geomorphic Settings. Wetlands, 2020, 40, 1047-1059.	1.5	11
83	Effects of crab burrows on sediment characteristics in a Ceriops australis-dominated mangrove forest. Estuarine, Coastal and Shelf Science, 2019, 218, 334-339.	2.1	10
84	Effects of Warming and Nutrient Enrichment on How Grazing Pressure Affects Leaf Litter-Colonizing Bacteria. Journal of Environmental Quality, 2014, 43, 851-858.	2.0	9
85	Modelling of mangrove annual leaf litterfall with emphasis on the role of vegetation structure. Estuarine, Coastal and Shelf Science, 2019, 218, 292-299.	2.1	9
86	Risk Assessment of Heavy Metal Concentrations in Sediments of Matang Mangrove Forest Reserve. Tropical Conservation Science, 2020, 13, 194008292093312.	1.2	9
87	Sterile Surfaces of <i>Mnemiopsis leidyi</i> (Ctenophora) in Bacterial Suspension—A Key to Invasion Success?. Open Journal of Marine Science, 2015, 05, 237-246.	0.5	9
88	Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod Ligia pallasii. Canadian Journal of Zoology, 2000, 78, 588-595.	1.0	8
89	Predator/Prey-Interactions Promote Decomposition of Low-Quality Detritus. Wetlands, 2012, 32, 931-938.	1.5	8
90	Mangrove leaf transportation: Do mimic Avicennia and Rhizophora roots retain or donate leaves?. Marine Ecology - Progress Series, 2016, 551, 107-115.	1.9	8

#	Article	IF	CITATIONS
91	Immune response inÂPorcellioÂscaber (Isopoda: Oniscidea): copper revisited. European Journal of Soil Biology, 2005, 41, 77-83.	3.2	7
92	Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). Journal of Animal Ecology, 2008, 69, 1071-1082.	2.8	7
93	Chemical changes in detrital matter upon digestive processes in a sesarmid crab feeding on mangrove leaf litter. Hydrobiologia, 2017, 803, 307-315.	2.0	7
94	Phytoextraction Potential of <i>Rhizophora Apiculata:</i> A Case Study in Matang Mangrove Forest Reserve, Malaysia. Tropical Conservation Science, 2020, 13, 194008292094734.	1.2	7
95	Intermediate tidal stress promotes theÂdetritivore-mediated decomposition ofÂSpartina litter. European Journal of Soil Biology, 2005, 41, 135-141.	3.2	6
96	Environment rather than genetic background explains intraspecific variation in the protein-precipitating capacity of phenolic compounds in beech litter. Plant Ecology and Diversity, 2015, 8, 73-79.	2.4	6
97	Ability of invasive green crabs to handle prey in a recently colonized region. Marine Ecology - Progress Series, 2013, 483, 221-229.	1.9	5
98	Aboveground macrodetritivores and belowground soil processes: Insights on species redundancy. Applied Soil Ecology, 2018, 124, 83-87.	4.3	5
99	Detritus. , 2019, , 292-301.		5
100	Crabâ€driven processing does not explain leaf litterâ€deposition in mangrove crab burrows. Ecology and Evolution, 2021, 11, 8856-8862.	1.9	5
101	Physical Litter Properties: Leaf Toughness and Tensile Strength. , 2020, , 187-193.		5
102	Latitudinal variation in plant?herbivore interactions in European salt marshes. Oikos, 2007, 116, 543-549.	2.7	4
103	Effects of temperature on carbon circulation in macroalgal food webs are mediated by herbivores. Marine Biology, 2019, 166, 1.	1.5	4
104	Flow and sediment dynamics around structures in mangrove ecosystems—a modeling perspective. , 2021, , 83-120.		4
105	Phenol Oxidation. , 2005, , 279-282.		3
106	Cellulases. , 2005, , 249-254.		3
107	Drivers of litter mass loss and faunal composition of detritus patches change over time. Ecology and Evolution, 2021, 11, 9642-9651.	1.9	3
108	Influence of environmental conditions on the distribution of Amphipoda, Talitridae, in the lagoon complex of Ghar El Melh (northâ€east of Tunisia). African Journal of Ecology, 2017, 55, 451-464.	0.9	2

#	Article	IF	CITATIONS
109	Hemolymph homeostasis in relation to diel feeding activity and microclimate in the prototypal land isopod <i>Ligia pallasii</i> . Canadian Journal of Zoology, 2000, 78, 588-595.	1.0	2
110	Mangrove Forests: Structure, Diversity, Ecosystem Processes and Threats. , 2022, , 116-127.		2
111	High-Throughput Techniques As Support for Knowledge-Based Spatial Conservation Prioritization in Mangrove Ecosystems. Coastal Research Library, 2018, , 539-554.	0.4	1
112	Are Crab-collectors in Mangroves of Northern Brazil (PA) Optimal Foragers?. Wetlands, 2021, 41, 1.	1.5	1
113	Phenol Oxidation. , 2020, , 433-437.		1
114	Quantity and quality of organic matter in mangrove sediments. , 2021, , 369-391.		0
115	Cellulases. , 2020, , 397-403.		0