Kaili Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3136390/publications.pdf

Version: 2024-02-01

18482 17592 16,171 222 62 121 h-index citations g-index papers 230 230 230 19410 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	SEM imaging of insulating specimen through a transparent conducting veil of carbon nanotube. Nano Research, 2022, 15, 6407-6415.	10.4	1
2	Chirality distribution of single-walled carbon nanotubes grown from gold nanoparticles. Carbon, 2022, 192, 259-264.	10.3	10
3	Visualizing nonlinear resonance in nanomechanical systems via single-electron tunneling. Nano Research, 2021, 14, 1156-1161.	10.4	8
4	Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene) Tj ETQq0 0 0 rgBT /Overloc	k 18.7f 50) 622 Td (tere
5	High-temperature epitaxial graphite deposition on macroscopic superaligned carbon nanotube structures by a one-step self-heating method. Carbon, 2021, 171, 837-844.	10.3	2
6	Monolithic superaligned carbon nanotube composite with integrated rewriting, actuating and sensing multifunctions. Nano Research, 2021, 14, 2456.	10.4	9
7	On-chip torsion balances with femtonewton force resolution at room temperature enabled by carbon nanotube and graphene. Science Advances, 2021, 7, .	10.3	3
8	Multi-order Nonlinearities and Resulting Coherent Oscillations of the States in Quantum Dot-Mechanical Resonator Hybrid System. , 2021, , .		0
9	Spray coating of a perfect absorber based on carbon nanotube multiscale composites. Carbon, 2021, 178, 616-624. Presence of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>10.3</td><td>22</td></mml:math>	10.3	22
10	display="inline"> <mml:mrow><mml:mi></mml:mi></mml:mrow> -Wave Pairing in Josephson Junctions Made of Twisted Ultrathin <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td></td><td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>		
11	Applied Physics, 2021, 129, 044303.	2.5	5
12	Toward an Intelligent Synthesis: Monitoring and Intervening in the Catalytic Growth of Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 17607-17614.	13.7	3
13	6 nm super-resolution optical transmission and scattering spectroscopic imaging of carbon nanotubes using a nanometer-scale white light source. Nature Communications, 2021, 12, 6868.	12.8	12
14	Extreme mechanical anisotropy in diamond with preferentially oriented nanotwin bundles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
15	Wafer-scale freestanding vanadium dioxide film. Science Advances, 2021, 7, eabk3438.	10.3	24
16	Optically Induced Phase Change for Magnetoresistance Modulation. Advanced Quantum Technologies, 2020, 3, 1900104.	3.9	34
17	Bifunctional NbS ₂ -Based Asymmetric Heterostructure for Lateral and Vertical Electronic Devices. ACS Nano, 2020, 14, 175-184.	14.6	51
18	Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2-Au porous structure fabricated using superaligned carbon nanotube films. International Journal of Hydrogen Energy, 2020, 45, 31963-31975.	7.1	7

#	Article	lF	Citations
19	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2070048.	1.8	0
20	The Influence of Carbon Nanotube's Conductivity and Diameter on Its Thermionic Electron Emission. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000069.	1.8	1
21	Optical Phonon Scattering Dominated Transport in Individual Suspended Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2020, 257, 2000103.	1.5	1
22	A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. Journal of Materials Chemistry C, 2020, 8, 10213-10220.	5 . 5	15
23	Direct laser patterning of two-dimensional lateral transition metal disulfide-oxide-disulfide heterostructures for ultrasensitive sensors. Nano Research, 2020, 13, 2035-2043.	10.4	21
24	Bidirectional micro-actuators based on eccentric coaxial composite oxide nanofiber. Nano Research, 2020, 13, 2451-2459.	10.4	5
25	Mixed-Dimensional Vertical Point p <i>–</i> n Junctions. ACS Nano, 2020, 14, 3181-3189.	14.6	18
26	Broadband omnidirectional perfect absorber based on carbon nanotube films. Carbon, 2020, 161, 510-516.	10.3	15
27	Flexible and free-standing hetero-electrocatalyst of high-valence-cation doped MoS ₂ /MoO ₂ /CNT foam with synergistically enhanced hydrogen evolution reaction catalytic activity. Journal of Materials Chemistry A, 2020, 8, 14944-14954.	10.3	25
28	High-throughput methods for evaluating the homogeneity of carbon nanotubes and graphene. Journal Physics D: Applied Physics, 2020, 53, 403001.	2.8	2
29	Infrared micro-detectors with high sensitivity and high response speed using VO ₂ -coated helical carbon nanocoils. Journal of Materials Chemistry C, 2019, 7, 12095-12103.	5.5	21
30	Superionic Modulation of Polymethylmethacrylate-Assisted Suspended Few-Layer Graphene Nanocomposites for High-Performance Photodetectors. ACS Applied Materials & Diterfaces, 2019, 11, 7600-7606.	8.0	6
31	Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures. Nano Letters, 2019, 19, 6756-6764.	9.1	17
32	Amorphous MoS ₂ Photodetector with Ultra-Broadband Response. ACS Applied Electronic Materials, 2019, 1, 1314-1321.	4.3	65
33	High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Research, 2019, 12, 1855-1861.	10.4	9
34	Emission Enhancement from CdSe/ZnS Quantum Dots Induced by Strong Localized Surface Plasmonic Resonances without Damping. Journal of Physical Chemistry Letters, 2019, 10, 2113-2120.	4.6	9
35	Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS APPLIED & ACS ACS ACS APPLIED &	8.0	47
36	Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593.	7.1	20

#	Article	IF	CITATIONS
37	High areal capacity flexible sulfur cathode based on multi-functionalized super-aligned carbon nanotubes. Nano Research, 2019, 12, 1105-1113.	10.4	28
38	Sub-10 nm Monolayer MoS ₂ Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. ACS Applied Materials & Interfaces, 2019, 11, 11612-11617.	8.0	27
39	Efficient Inorganic Cesium Lead Mixedâ€Halide Perovskite Solar Cells Prepared by Flashâ€Evaporation Printing. Energy Technology, 2019, 7, 1800986.	3.8	7
40	Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018, 1, 326-331.	34.4	61
41	Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. Journal of Power Sources, 2018, 389, 169-177.	7.8	107
42	CO2 oxidation of carbon nanotubes for lithium-sulfur batteries with improved electrochemical performance. Carbon, 2018, 132, 370-379.	10.3	48
43	Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706777.	14.9	242
44	Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 3426-3433.	6.7	34
45	Perovskite Solar Cells: Allâ€Carbonâ€Electrodeâ€Based Endurable Flexible Perovskite Solar Cells (Adv.) Tj ETQq1	1 9.7,8431	4 ggBT /Ove
46	Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	5.6	46
47	TiO ₂ -Nanocoated Black Phosphorus Electrodes with Improved Electrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36058-36066.	8.0	23
48	Stressed carbon nanotube devices for high tunability, high quality factor, single mode GHz resonators. Nano Research, 2018, 11, 5812-5822.	10.4	13
49	Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs. Nanoscale, 2018, 10, 11158-11164.	5.6	35
50	Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale, 2018, 10, 15195-15204.	5.6	60
51	Three-Dimensional Carbon Nanotube/Transition-Metal Oxide Sponges as Composite Electrodes with Enhanced Electrochemical Performance. ACS Applied Nano Materials, 2018, 1, 2997-3005.	5.0	20
52	Crystalline multiwall carbon nanotubes and their application as a field emission electron source. Nanotechnology, 2018, 29, 345601.	2.6	6
53	Quantitative characterization of nanoindentation properties of CVI gradient SiC ceramic into CNT arrays. Journal of Alloys and Compounds, 2018, 762, 196-202.	5.5	7
54	Carbon Nanotube Film Gate in Vacuum Electronic Devices. Nano Letters, 2018, 18, 4691-4696.	9.1	8

#	Article	IF	Citations
55	MnO2 nanoparticles anchored on carbon nanotubes with hybrid supercapacitor-battery behavior for ultrafast lithium storage. Carbon, 2018, 139, 145-155.	10.3	77
56	Ultrathin HfO2-modified carbon nanotube films as efficient polysulfide barriers for Li-S batteries. Carbon, 2018, 139, 896-905.	10.3	33
57	Laser-Induced Flash-Evaporation Printing CH ₃ NH ₃ Pbl ₃ Thin Films for High-Performance Planar Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26206-26212.	8.0	10
58	Multifunctional super-aligned carbon nanotube/polyimide composite film heaters and actuators. Carbon, 2018, 139, 1136-1143.	10.3	78
59	Superconductor–Insulator Transitions in Exfoliated Bi ₂ Sr ₂ CaCu ₂ O _{8+Î} Flakes. Nano Letters, 2018, 18, 5660-5665.	9.1	50
60	Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Research, 2018, 11, 6316-6324.	10.4	59
61	Efficiently Improving the Stability of Inverted Perovskite Solar Cells by Employing Polyethylenimine-Modified Carbon Nanotubes as Electrodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31384-31393.	8.0	68
62	Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. Nano Letters, 2017, 17, 915-921.	9.1	37
63	Sandwich-structured cathodes with cross-stacked carbon nanotube films as conductive layers for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 4047-4057.	10.3	11
64	Scanning electron microscopy imaging of single-walled carbon nanotubes on substrates. Nano Research, 2017, 10, 1804-1818.	10.4	12
65	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	14.6	23
66	Inverse Hysteresis and Ultrasmall Hysteresis Thinâ€Film Transistors Fabricated Using Sputtered Dielectrics. Advanced Electronic Materials, 2017, 3, 1600483.	5.1	9
67	Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale, 2017, 9, 6716-6723.	5.6	108
68	Li‧ Batteries: Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Li–S Batteries (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
69	Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 18945-18955.	8.0	20
70	Facile growth of vertically-aligned graphene nanosheets via thermal CVD: The experimental and theoretical investigations. Carbon, 2017, 121, 1-9.	10.3	53
71	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. Small, 2017, 13, 1700966.	10.0	10
72	Ultrathin MnO ₂ /Graphene Oxide/Carbon Nanotube Interlayer as Efficient Polysulfideâ€Trapping Shield for Highâ€Performance Liâ€"S Batteries. Advanced Functional Materials, 2017, 27, 1606663.	14.9	306

#	Article	IF	Citations
73	Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film. Journal of Materials Science, 2017, 52, 7224-7231.	3.7	8
74	Super-aligned carbon nanotube films with a thin metal coating as highly conductive and ultralight current collectors for lithium-ion batteries. Journal of Power Sources, 2017, 351, 160-168.	7.8	22
75	SWCNTâ€MoS ₂ ‧WCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
76	Flexible, All-Inorganic Actuators Based on Vanadium Dioxide and Carbon Nanotube Bimorphs. Nano Letters, 2017, 17, 421-428.	9.1	89
77	Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM. Nano Research, 2017, 10, 1896-1902.	10.4	11
78	Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. Environmental Science: Nano, 2017, 4, 2010-2017.	4.3	56
79	Carbonâ€Nanotubeâ€Confined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials, 2017, 29, 1702942.	21.0	21
80	Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy Substrate with Nanometer-Scale Quasi-periodic Nanostructures. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32369-32376.	8.0	25
81	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	10.3	35
82	Carbon Nanotube Based Inverted Flexible Perovskite Solar Cells with Allâ€Inorganic Charge Contacts. Advanced Functional Materials, 2017, 27, 1703068.	14.9	132
83	Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon, 2017, 123, 786-793.	10.3	44
84	Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7, 34795-34800.	3.6	8
85	Flash-evaporation printing methodology for perovskite thin films. NPG Asia Materials, 2017, 9, e395-e395.	7.9	17
86	Selfâ€assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. Advanced Materials, 2017, 29, 1603549.	21.0	69
87	High throughput methods for evaluating the homogeneity of nanomaterials for nanoelectronics. , $2017, \ldots$		0
88	Dielectric-Like Behavior of Graphene in Au Plasmon Resonator. Nanoscale Research Letters, 2016, 11, 541.	5.7	1
89	Strongly Coupled Nanotube Electromechanical Resonators. Nano Letters, 2016, 16, 5456-5462.	9.1	55
90	Parametric strong mode-coupling in carbon nanotube mechanical resonators. Nanoscale, 2016, 8, 14809-14813.	5.6	19

#	Article	IF	Citations
91	Radiation effects and radiation hardness solutions for single-walled carbon nanotube-based thin film transistors and logic devices. Carbon, 2016, 108, 363-371.	10.3	21
92	Sharp-Tip Silver Nanowires Mounted on Cantilevers for High-Aspect-Ratio High-Resolution Imaging. Nano Letters, 2016, 16, 6896-6902.	9.1	30
93	Observation of Charge Generation and Transfer during CVD Growth of Carbon Nanotubes. Nano Letters, 2016, 16, 4102-4109.	9.1	30
94	Three-Dimensional Flexible Complementary Metal–Oxide–Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks. ACS Nano, 2016, 10, 2193-2202.	14.6	66
95	Cross-stacked carbon nanotube film as an additional built-in current collector and adsorption layer for high-performance lithium sulfur batteries. Nanotechnology, 2016, 27, 075401.	2.6	20
96	A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles. ACS Central Science, 2016, 2, 169-174.	11.3	362
97	Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 5569-5577.	10.3	92
98	Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2016, 10, 1300-1308.	14.6	196
99	Mesoporous Li ₄ Ti ₅ O ₁₂ nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale, 2016, 8, 617-625.	5.6	46
100	Binder-free polymer encapsulated sulfur–carbon nanotube composite cathodes for high performance lithium batteries. Carbon, 2016, 96, 1053-1059.	10.3	64
101	Monolayer charge-neutral graphene on platinum with extremely weak electron-phonon coupling. Physical Review B, 2015, 92, .	3.2	12
102	Study of Carbon Nanotubes as Etching Masks and Related Applications in the Surface Modification of GaAsâ€based Lightâ€Emitting Diodes. Small, 2015, 11, 4111-4116.	10.0	8
103	Demonstration of nonvolatile multilevel memory in ambipolar carbon nanotube thin-film transistors. Applied Physics Express, 2015, 8, 065101.	2.4	2
104	Fast Adaptive Thermal Camouflage Based on Flexible VO ₂ /Graphene/CNT Thin Films. Nano Letters, 2015, 15, 8365-8370.	9.1	253
105	Super-aligned carbon nanotube/graphene hybrid materials as a framework for sulfur cathodes in high performance lithium sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 5305-5312.	10.3	112
106	Large-Strain, Multiform Movements from Designable Electrothermal Actuators Based on Large Highly Anisotropic Carbon Nanotube Sheets. ACS Nano, 2015, 9, 409-418.	14.6	161
107	Ice-Assisted Transfer of Carbon Nanotube Arrays. Nano Letters, 2015, 15, 1843-1848.	9.1	11
108	Synergistic effect of manganese oxide nanoparticles and graphene nanosheets in composite anodes for lithium ion batteries. Materials Research Express, 2015, 2, 015503.	1.6	2

#	Article	IF	Citations
109	Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Research, 2015, 8, 303-319.	10.4	12
110	True-color real-time imaging and spectroscopy of carbon nanotubes on substrates using enhanced Rayleigh scattering. Nano Research, 2015, 8, 2721-2732.	10.4	34
111	Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates. Nano Research, 2015, 8, 2024-2032.	10.4	4
112	Silicene nanomesh. Scientific Reports, 2015, 5, 9075.	3.3	42
113	Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films. Nanoscale, 2015, 7, 10178-10185.	5.6	55
114	Load Characteristics of a Suspended Carbon Nanotube Film Heater and the Fabrication of a Fast-Response Thermochromic Display Prototype. ACS Nano, 2015, 9, 3753-3759.	14.6	39
115	Grain-Boundary-Dependent CO ₂ Electroreduction Activity. Journal of the American Chemical Society, 2015, 137, 4606-4609.	13.7	583
116	Positive and Negative Effects of Carbon Nanotubes on the Hydrogen Sorption Kinetics of Magnesium. Journal of Physical Chemistry C, 2015, 119, 25282-25290.	3.1	31
117	Reversibility of Noble Metal-Catalyzed Aprotic Li-O ₂ Batteries. Nano Letters, 2015, 15, 8084-8090.	9.1	165
118	Fabrication of air-stable n-type carbon nanotube thin-film transistors on flexible substrates using bilayer dielectrics. Nanoscale, 2015, 7, 17693-17701.	5.6	26
119	Large area nanoscale metal meshes for use as transparent conductive layers. Nanoscale, 2015, 7, 16508-16515.	5.6	7
120	Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy. Ultramicroscopy, 2015, 148, 75-80.	1.9	12
121	Cycle and rate performance of chemically modified super-aligned carbon nanotube electrodes for lithium ion batteries. Carbon, 2014, 69, 444-451.	10.3	31
122	Enhanced optical output power of blue light-emitting diodes with quasi-aligned gold nanoparticles. Nanoscale Research Letters, 2014, 9, 7.	5.7	23
123	Heating graphene to incandescence and the measurement of its work function by the thermionic emission method. Nano Research, 2014, 7, 553-560.	10.4	50
124	Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Advances, 2014, 4, 20010-20016.	3.6	39
125	Effects of carbon nanotubes on the dehydrogenation behavior of magnesium hydride at relatively low temperatures. Journal of Materials Chemistry A, 2014, 2, 16369-16372.	10.3	19
126	Trap-State-Dominated Suppression of Electron Conduction in Carbon Nanotube Thin-Film Transistors. ACS Nano, 2014, 8, 9597-9605.	14.6	36

#	Article	IF	Citations
127	Vapor-Condensation-Assisted Optical Microscopy for Ultralong Carbon Nanotubes and Other Nanostructures. Nano Letters, 2014, 14, 3527-3533.	9.1	29
128	Metal-film-assisted ultra-clean transfer of single-walled carbon nanotubes. Nano Research, 2014, 7, 981-989.	10.4	15
129	New Insight in Understanding Oxygen Reduction and Evolution in Solid-State Lithium–Oxygen Batteries Using an in Situ Environmental Scanning Electron Microscope. Nano Letters, 2014, 14, 4245-4249.	9.1	104
130	Diameter distribution control of single-walled carbon nanotubes by etching ferritin nanoparticles. Applied Physics Express, 2014, 7, 055102.	2.4	4
131	Mesoporous Li4Ti5O12 nanoclusters as high performance negative electrodes for lithium ion batteries. Journal of Power Sources, 2014, 248, 265-272.	7.8	61
132	Enhanced performance of graphene transistor with ion-gel top gate. Carbon, 2014, 68, 480-486.	10.3	23
133	Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. Journal of Power Sources, 2014, 249, 463-469.	7.8	68
134	Sulfur Nanocrystals Confined in Carbon Nanotube Network As a Binder-Free Electrode for High-Performance Lithium Sulfur Batteries. Nano Letters, 2014, 14, 4044-4049.	9.1	262
135	Applications of carbon nanotubes in high performance lithium ion batteries. Frontiers of Physics, 2014, 9, 351-369.	5.0	54
136	Hybrid super-aligned carbon nanotube/carbon black conductive networks: AÂstrategy to improve both electrical conductivity and capacity for lithium ionÂbatteries. Journal of Power Sources, 2013, 233, 209-215.	7.8	66
137	Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. Journal of Materials Chemistry A, 2013, 1, 11121.	10.3	50
138	Evaluating Bandgap Distributions of Carbon Nanotubes via Scanning Electron Microscopy Imaging of the Schottky Barriers. Nano Letters, 2013, 13, 5556-5562.	9.1	24
139	Excitation of Surface Plasmon Resonance in Composite Structures Based on Single-Layer Superaligned Carbon Nanotube Films. Journal of Physical Chemistry C, 2013, 117, 23190-23197.	3.1	12
140	The Dependence of Graphene Raman D-band on Carrier Density. Nano Letters, 2013, 13, 6170-6175.	9.1	138
141	Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nature Communications, 2013, 4, 2920.	12.8	71
142	In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sensors and Actuators B: Chemical, 2013, 176, 141-148.	7.8	29
143	Thermoacoustic Chips with Carbon Nanotube Thin Yarn Arrays. Nano Letters, 2013, 13, 4795-4801.	9.1	67
144	Modeling and optimization of ambipolar graphene transistors in the diffusive limit. Journal of Applied Physics, 2013, 114, 164508.	2.5	2

#	Article	IF	Citations
145	Conformal Fe ₃ O ₄ Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries. Nano Letters, 2013, 13, 818-823.	9.1	289
146	High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 2013, 6, 208-215.	10.4	38
147	Superâ€Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 846-853.	14.9	258
148	Sensitivity Limits and Scaling of Bioelectronic Graphene Transducers. Nano Letters, 2013, 13, 2902-2907.	9.1	31
149	Fabrication of Allâ€Carbon Nanotube Electronic Devices on Flexible Substrates Through CVD and Transfer Methods. Advanced Materials, 2013, 25, 6050-6056.	21.0	24
150	Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon, 2012, 50, 5372-5379.	10.3	24
151	Efficient Fabrication of Carbon Nanotube Micro Tip Arrays by Tailoring Cross-Stacked Carbon Nanotube Sheets. Nano Letters, 2012, 12, 2071-2076.	9.1	12
152	A Display Module Implemented by the Fast High-Temperatue Response of Carbon Nanotube Thin Yarns. Nano Letters, 2012, 12, 2548-2553.	9.1	14
153	Highly catalytic cross-stacked superaligned carbon nanotube sheets for iodine-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22756.	6.7	26
154	Direct Identification of Metallic and Semiconducting Single-Walled Carbon Nanotubes in Scanning Electron Microscopy. Nano Letters, 2012, 12, 4095-4101.	9.1	61
155	New-Type Planar Field Emission Display with Superaligned Carbon Nanotube Yarn Emitter. Nano Letters, 2012, 12, 2391-2396.	9.1	87
156	Binderâ€Free LiCoO ₂ /Carbon Nanotube Cathodes for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2012, 24, 2294-2298.	21.0	271
157	Fabrication and processing of high-strength densely packed carbon nanotube yarns without solution processes. Nanoscale, 2012, 4, 3389.	5.6	36
158	Formation of free-standing carbon nanotube array on super-aligned carbon nanotube film and its field emission properties. Nano Research, 2012, 5, 421-426.	10.4	10
159	A vacuum sensor using field emitters made by multiwalled carbon nanotube yarns. Vacuum, 2012, 86, 885-888.	3.5	25
160	A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films. Nanotechnology, 2011, 22, 025502.	2.6	36
161	Aligned carbon nanotube coating on polyethylene surface formed by microwave radiation. Composites Science and Technology, 2011, 72, 85-90.	7.8	22
162	In Situ TEM observation of the gasification and growth of carbon nanotubes using iron catalysts. Nano Research, 2011, 4, 767-779.	10.4	91

#	Article	IF	Citations
163	Carbonâ€Nanotubeâ€Film Microheater on a Polyethylene Terephthalate Substrate and Its Application in Thermochromic Displays. Small, 2011, 7, 732-736.	10.0	113
164	Crossâ€6tacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors. Advanced Functional Materials, 2011, 21, 2721-2728.	14.9	156
165	Superaligned Carbon Nanotube Arrays, Films, and Yarns: A Road to Applications. Advanced Materials, 2011, 23, 1154-1161.	21.0	391
166	A graphene oxide–carbon nanotube grid for high-resolution transmission electron microscopy of nanomaterials. Nanotechnology, 2011, 22, 385704.	2.6	3
167	High frequency response of carbon nanotube thin film speaker in gases. Journal of Applied Physics, 2011, 110, .	2.5	61
168	Synthesis of Carbon Nanotubes on Suspending Microstructures by Rapid Local Laser Heating. IEEE Sensors Journal, 2011, 11, 3424-3425.	4.7	12
169	Fabrication of Dense Horizontally Aligned Arrays of Single-Wall Carbon Nanotubes from Vertically Aligned Arrays. Applied Physics Express, 2011, 4, 015101.	2.4	4
170	Superaligned arrays, films, and yarns of carbon nanotubes: a road toward applications. Scientia Sinica: Physica, Mechanica Et Astronomica, 2011, 41, 390-403.	0.4	3
171	Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Research, 2010, 3, 222-233.	10.4	123
172	Flexible, Stretchable, Transparent Conducting Films Made from Superaligned Carbon Nanotubes. Advanced Functional Materials, 2010, 20, 885-891.	14.9	363
173	Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon, 2010, 48, 260-266.	10.3	195
174	In situ fabrication of HfC-decorated carbon nanotube yarns and their field-emission properties. Carbon, 2010, 48, 531-537.	10.3	19
175	Super-aligned carbon nanotube films as aligning layers and transparent electrodes for liquid crystal displays. Carbon, 2010, 48, 1876-1879.	10.3	100
176	Field emission behavior study of multiwalled carbon nanotube yarn under the influence of adsorbents. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 736-739.	1.2	13
177	Selective fabrication of quasi-parallel single-walled carbon nanotubes on silicon substrates. Nanotechnology, 2010, 21, 395602.	2.6	5
178	Scratch-Resistant, Highly Conductive, and High-Strength Carbon Nanotube-Based Composite Yarns. ACS Nano, 2010, 4, 5827-5834.	14.6	243
179	High-performance supercapacitors using a nanoporous current collector made from super-aligned carbon nanotubes. Nanotechnology, 2010, 21, 345701.	2.6	85
180	Highly Sensitive Surface-Enhanced Raman Scattering Substrate Made from Superaligned Carbon Nanotubes. Nano Letters, 2010, 10, 1747-1753.	9.1	157

#	Article	IF	Citations
181	Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 2010, 21, 045708.	2.6	219
182	Periodically striped films produced from super-aligned carbon nanotube arrays. Nanotechnology, 2009, 20, 335705.	2.6	34
183	Crossâ€Stacked Carbon Nanotube Sheets Uniformly Loaded with SnO ₂ Nanoparticles: A Novel Binderâ€Free and Highâ€Capacity Anode Material for Lithiumâ€Ion Batteries. Advanced Materials, 2009, 21, 2299-2304.	21.0	444
184	Fast Highâ€Temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display. Advanced Materials, 2009, 21, 3563-3566.	21.0	91
185	Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry C, 2009, 113, 9623-9631.	3.1	32
186	Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates. Nano Letters, 2009, 9, 3137-3141.	9.1	516
187	Controlled Fabrication of High-Quality Carbon Nanoscrolls from Monolayer Graphene. Nano Letters, 2009, 9, 2565-2570.	9.1	312
188	Femtosecond laser pulse generation in an erbium-doped ring cavity fiber laser with a single-wall carbon-nanotube saturable absorber. , 2009, , .		0
189	Growth mechanism of Y-junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition. Carbon, 2008, 46, 440-444.	10.3	22
190	Protein microarrays with carbon nanotubes as multicolor Raman labels. Nature Biotechnology, 2008, 26, 1285-1292.	17.5	317
191	Measuring the Work Function of Carbon Nanotubes with Thermionic Method. Nano Letters, 2008, 8, 647-651.	9.1	199
192	Flexible, Stretchable, Transparent Carbon Nanotube Thin Film Loudspeakers. Nano Letters, 2008, 8, 4539-4545.	9.1	472
193	Measurement of polarized nano-material (PNM) for microwave applications., 2008,,.		4
194	Multiplexed Multicolor Raman Imaging of Live Cells with Isotopically Modified Single Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 13540-13541.	13.7	251
195	Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials. Nano Letters, 2008, 8, 2564-2569.	9.1	57
196	Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets with Tunable Physical Properties. Nano Letters, 2008, 8, 700-705.	9.1	259
197	Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites. Journal of Materials Research, 2008, 23, 2975-2983.	2.6	86
198	Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications. Nanotechnology, 2008, 19, 475707.	2.6	13

#	Article	IF	Citations
199	Scanning focused laser activation of carbon nanotube cathodes for field emission flat panel displays. Nanotechnology, 2008, 19, 135703.	2.6	16
200	Breaking single-walled carbon nanotube bundles by Joule heating. Applied Physics Letters, 2008, 93, .	3.3	24
201	Barium-functionalized multiwalled carbon nanotube yarns as low-work-function thermionic cathodes. Applied Physics Letters, 2008, 92, .	3.3	28
202	Laser direct writing carbon nanotube arrays on transparent substrates. Applied Physics Letters, 2007, 90, 133108.	3.3	26
203	Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Physical Review B, 2007, 76, .	3.2	52
204	Laser-Induced High Local Temperature in Carbon Nanotube. Solid State Phenomena, 2007, 121-123, 331-336.	0.3	4
205	A Vapor-Liquid-Solid Model for Chemical Vapor Deposition Growth of Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2007, 7, 1494-1504.	0.9	39
206	Transition of Single-Walled Carbon Nanotubes from Metallic to Semiconducting in Field-Effect Transistors by Hydrogen Plasma Treatment. Nano Letters, 2007, 7, 1622-1625.	9.1	50
207	Vacuum-Breakdown-Induced Needle-Shaped Ends of Multiwalled Carbon Nanotube Yarns and Their Field Emission Applications. Nano Letters, 2007, 7, 3792-3797.	9.1	60
208	Controlled Termination of the Growth of Vertically Aligned Carbon Nanotube Arrays. Advanced Materials, 2007, 19, 975-978.	21.0	37
209	Preparation of singleâ€walled carbon nanotube fiber coating for solidâ€phase microextraction of organochlorine pesticides in lake water and wastewater. Journal of Separation Science, 2007, 30, 2138-2143.	2.5	94
210	Effect of carbon deposits on the reactor wall during the growth of multi-walled carbon nanotube arrays. Carbon, 2007, 45, 2379-2387.	10.3	26
211	Thermionic emission and work function of multiwalled carbon nanotube yarns. Physical Review B, 2006, 73, .	3.2	98
212	Measuring the stress in field-emitting carbon nanotubes. Nanotechnology, 2006, 17, 1994-1998.	2.6	23
213	Tip Cooling Effect and Failure Mechanism of Field-Emitting Carbon Nanotubes. Nano Letters, 2006, 7, 64-68.	9.1	77
214	Spinning and Processing Continuous Yarns from 4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. Advanced Materials, 2006, 18, 1505-1510.	21.0	563
215	LaB6 tip-modified multiwalled carbon nanotube as high quality field emission electron source. Applied Physics Letters, 2006, 89, 203112.	3.3	38
216	Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Applied Physics Letters, 2006, 89, 063101.	3.3	71

Kaili Jiang

#	Article	IF	CITATIONS
217	A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon, 2005, 43, 2850-2856.	10.3	142
218	Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays. Advanced Materials, 2005, 17, 56-61.	21.0	112
219	A cylindrical rod ultrasonic motor with $1\mathrm{mm}$ diameter and its application in endoscopic OCT. Science Bulletin, 2005, 50, 826-830.	1.7	19
220	Shape-controlled synthesis of silver nanostructures. Nanotechnology, 2005, 16, 2412-2414.	2.6	20
221	Polarized incandescent light emission from carbon nanotubes. Applied Physics Letters, 2003, 82, 1763-1765.	3.3	87
222	Spinning continuous carbon nanotube yarns. Nature, 2002, 419, 801-801.	27.8	1,023