
Nathalie Tufenkji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3135823/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silverâ€doped solâ€gel borate glasses: Doseâ€dependent effect on <i>Pseudomonas aeruginosa</i> biofilms and keratinocyte function. Journal of the American Ceramic Society, 2022, 105, 1711-1722.	3.8	10
2	Weathering pathways and protocols for environmentally relevant microplastics and nanoplastics: What are we missing?. Journal of Hazardous Materials, 2022, 423, 126955.	12.4	98
3	Sustainable iron-grafted cellulose fibers enable coagulant recycling and improve contaminant removal in water treatment. Chemical Engineering Journal, 2022, 430, 132927.	12.7	8
4	Metabolic Consequences of Developmental Exposure to Polystyrene Nanoplastics, the Flame Retardant BDE-47 and Their Combination in Zebrafish. Frontiers in Pharmacology, 2022, 13, 822111.	3.5	5
5	Sustainable strategies to treat urban runoff needed. Nature Sustainability, 2022, 5, 366-369.	23.7	24
6	Super-bridging fibrous materials for water treatment. Npj Clean Water, 2022, 5, .	8.0	8
7	From freshwaters to bivalves: Microplastic distribution along the Saint-Lawrence river-to-sea continuum. Journal of Hazardous Materials, 2022, 435, 128977.	12.4	11
8	Single-Particle Resolution Fluorescence Microscopy of Nanoplastics. Environmental Science & Technology, 2022, 56, 6426-6435.	10.0	22
9	Fate of microfibres from single-use face masks: Release to the environment and removal during wastewater treatment. Journal of Hazardous Materials, 2022, 438, 129408.	12.4	12
10	Surface Wettability Is a Key Feature in the Mechano-Bactericidal Activity of Nanopillars. ACS Applied Materials & Interfaces, 2022, 14, 27564-27574.	8.0	27
11	Mechanistic understanding of the aggregation kinetics of nanoplastics in marine environments: Comparing synthetic and natural water matrices. Journal of Hazardous Materials Advances, 2022, 7, 100115.	3.0	4
12	Exposure of nanoplastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments. Water Research, 2021, 189, 116533.	11.3	51
13	Green synthesis of carbon dots and their applications. RSC Advances, 2021, 11, 25354-25363.	3.6	113
14	Polystyrene micro- and nanoplastics affect locomotion and daily activity of <i>Drosophila melanogaster </i> . Environmental Science: Nano, 2021, 8, 110-121.	4.3	26
15	Cranberry-Derived Proanthocyanidins Potentiate β-Lactam Antibiotics against Resistant Bacteria. Applied and Environmental Microbiology, 2021, 87, .	3.1	9
16	Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology, 2021, 16, 501-507.	31.5	377
17	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
18	Release of TiO ₂ nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS. Environmental Science: Nano, 2020, 7, 139-148.	4.3	26

#	Article	IF	CITATIONS
19	Response to Comment on "Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea― Environmental Science & Technology, 2020, 54, 14136-14137.	10.0	12
20	Biofilm formation by marine bacteria is impacted by concentration and surface functionalization of polystyrene nanoparticles in a speciesâ€specific manner. Environmental Microbiology Reports, 2020, 12, 203-213.	2.4	36
21	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 2020, 1, 416-425.	14.0	239
22	Single- and Multi-Element Quantification and Characterization of TiO2 Nanoparticles Released From Outdoor Stains and Paints. Frontiers in Environmental Science, 2020, 8, .	3.3	33
23	Highly Absorbent Antibacterial and Biofilm-Disrupting Hydrogels from Cellulose for Wound Dressing Applications. ACS Applied Materials & Interfaces, 2020, 12, 39991-40001.	8.0	60
24	Graphene oxide sponge as adsorbent for organic contaminants: comparison with granular activated carbon and influence of water chemistry. Environmental Science: Nano, 2020, 7, 2669-2680.	4.3	24
25	Engineering Polymer Forest on Membranes: Tuning Density, Thickness, and Architecture for Biofouling Control. ACS Applied Polymer Materials, 2020, 2, 4592-4603.	4.4	9
26	Polymer-Free Emulsion-Templated Graphene-Based Sponges for Contaminant Removal. ACS Applied Materials & Interfaces, 2020, 12, 52095-52103.	8.0	13
27	Primary and Secondary Plastic Particles Exhibit Limited Acute Toxicity but Chronic Effects on <i>Daphnia magna</i> . Environmental Science & Technology, 2020, 54, 6859-6868.	10.0	97
28	Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria. Nano Letters, 2020, 20, 5720-5727.	9.1	57
29	Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & amp; Technology, 2020, 54, 8719-8727.	10.0	222
30	Green Synthesis of High Quantum Yield Carbon Dots from Phenylalanine and Citric Acid: Role of Stoichiometry and Nitrogen Doping. ACS Sustainable Chemistry and Engineering, 2020, 8, 5566-5575.	6.7	81
31	Reply to the â€~Comment on "Hierarchically porous, ultra-strong reduced graphene oxide–cellulose nanocrystal sponges for exceptional adsorption of water contaminantsâ€â€™ by J. Ma, Y. Xiong and F. Yu, Nanoscale, 2019, 11, DOI: 10.1039/C8NR08780F. Nanoscale, 2020, 12, 9899-9901.	5.6	2
32	Effect of freeze/thaw on aggregation and transport of nano-TiO ₂ in saturated porous media. Environmental Science: Nano, 2020, 7, 1781-1793.	4.3	12
33	Comparing TiO ₂ nanoparticle formulations: stability and photoreactivity are key factors in acute toxicity to <i>Daphnia magna</i> . Environmental Science: Nano, 2019, 6, 2532-2543.	4.3	21
34	Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science & Technology, 2019, 53, 12300-12310.	10.0	591
35	Microfluidic Shear Assay to Distinguish between Bacterial Adhesion and Attachment Strength on Stiffness-Tunable Silicone Substrates. Langmuir, 2019, 35, 8840-8849.	3.5	25
36	Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 2019, 14, 532-540.	31.5	551

#	Article	IF	CITATIONS
37	Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gramâ€Negative Bacteria. Advanced Science, 2019, 6, 1802333.	11.2	45
38	Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples. Accounts of Chemical Research, 2019, 52, 858-866.	15.6	418
39	Self-Assembly of Ultralarge Graphene Oxide Nanosheets and Alginate into Layered Nanocomposites for Robust Packaging Materials. ACS Applied Nano Materials, 2019, 2, 1431-1444.	5.0	17
40	Antimicrobial Hierarchically Porous Graphene Oxide Sponges for Water Treatment. ACS Applied Bio Materials, 2019, 2, 1578-1590.	4.6	21
41	Artificial turf infill associated with systematic toxicity in an amniote vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25156-25161.	7.1	20
42	Development and characterization of silver-doped sol-gel-derived borate glasses with anti-bacterial activity. Journal of Non-Crystalline Solids, 2019, 505, 438-446.	3.1	32
43	Environmental performance of graphene-based 3D macrostructures. Nature Nanotechnology, 2019, 14, 107-119.	31.5	286
44	Toxicity Assessments of Micro- and Nanoplastics Can Be Confounded by Preservatives in Commercial Formulations. Environmental Science and Technology Letters, 2019, 6, 21-25.	8.7	114
45	Bacteriophage-based strategies for biofouling control in ultrafiltration: In situ biofouling mitigation, biocidal additives and biofilm cleanser. Journal of Colloid and Interface Science, 2018, 523, 254-265.	9.4	37
46	Amendment of Agricultural Soil with Metal Nanoparticles: Effects on Soil Enzyme Activity and Microbial Community Composition. Environmental Science & Technology, 2018, 52, 1908-1918.	10.0	188
47	Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Advances in Colloid and Interface Science, 2018, 252, 55-68.	14.7	109
48	Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environmental Science & Technology, 2018, 52, 1704-1724.	10.0	1,560
49	Hierarchically porous, ultra-strong reduced graphene oxide-cellulose nanocrystal sponges for exceptional adsorption of water contaminants. Nanoscale, 2018, 10, 7171-7184.	5.6	75
50	Exposure to Freeze–Thaw Conditions Increases Virulence of <i>Pseudomonas aeruginosa</i> to <i>Drosophila melanogaster</i> . Environmental Science & Technology, 2018, 52, 14180-14186.	10.0	6
51	Natural freeze-thaw cycles may increase the risk associated with Salmonella contamination in surface and groundwater environments. Water Research X, 2018, 1, 100005.	6.1	12
52	Anodized Aluminum with Nanoholes Impregnated with Quaternary Ammonium Compounds Can Kill Pathogenic Bacteria within Seconds of Contact. ACS Applied Materials & Interfaces, 2018, 10, 41207-41214.	8.0	18
53	Evaluating the Cell Membrane Penetration Potential of Lipid-Soluble Compounds Using Supported Phospholipid Bilayers. Analytical Chemistry, 2018, 90, 11174-11178.	6.5	7
54	Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. ACS Applied Materials & Interfaces, 2018, 10, 33827-33838.	8.0	92

#	Article	IF	CITATIONS
55	Overcoming Interfacial Scaling Using Engineered Nanocelluloses: A QCM-D Study. ACS Applied Materials & Interfaces, 2018, 10, 34553-34560.	8.0	7
56	Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 2018, 1, 627-635.	4.6	27
57	QCM-D and NanoTweezer measurements to characterize the effect of soil cellulase on the deposition of PEG-coated TiO2 nanoparticles in model subsurface environments. Environmental Science: Nano, 2018, 5, 2172-2183.	4.3	8
58	Partitioning and Accumulation of Perfluoroalkyl Substances in Model Lipid Bilayers and Bacteria. Environmental Science & Technology, 2018, 52, 10433-10440.	10.0	74
59	Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial community in soil slurries: role of nanoparticle size and surface coating. Environmental Science: Nano, 2017, 4, 907-918.	4.3	35
60	An improved experimental methodology to evaluate the effectiveness of protective gloves against nanoparticles in suspension. Journal of Occupational and Environmental Hygiene, 2017, 14, D95-D101.	1.0	3
61	Role of Cell Appendages in Initial Attachment and Stability of <i>E. coli</i> on Silica Monitored by Nondestructive TIRF Microscopy. Langmuir, 2017, 33, 4066-4075.	3.5	11
62	Chlamydomonas reinhardtii displays aversive swimming response to silver nanoparticles. Environmental Science: Nano, 2017, 4, 1328-1338.	4.3	7
63	Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability. Environmental Science: Nano, 2017, 4, 1339-1349.	4.3	49
64	Are There Nanoplastics in Your Personal Care Products?. Environmental Science and Technology Letters, 2017, 4, 280-285.	8.7	452
65	Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, 2017, 111, 10-17.	11.3	54
66	Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes. Water Research, 2017, 126, 299-307.	11.3	75
67	Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring. Frontiers in Chemistry, 2016, 4, 46.	3.6	43
68	Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring. ACS Applied Materials & Interfaces, 2016, 8, 13698-13706.	8.0	29
69	Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 14339-14348.	8.0	29
70	Cranberry derivatives enhance biofilm formation and transiently impair swarming motility of the uropathogen <i>Proteus mirabilis</i> HI4320. Canadian Journal of Microbiology, 2016, 62, 464-474.	1.7	13
71	Spray- and spin-assisted layer-by-layer assembly of copper nanoparticles on thin-film composite reverse osmosis membrane forAbiofouling mitigation. Water Research, 2016, 99, 188-199.	11.3	99

Microfluidics in microbiology: putting a magnifying glass on microbes. Integrative Biology (United) Tj ETQq0 0 0 rgBT/Overlogk 10 Tf 50 1.3

#	Article	IF	CITATIONS
73	One-pot green synthesis of anisotropic silver nanoparticles. Environmental Science: Nano, 2016, 3, 1259-1264.	4.3	21
74	Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Scientific Reports, 2016, 6, 30169.	3.3	89
75	Hydrophobicity of biofilm coatings influences the transport dynamics of polystyrene nanoparticles in biofilm-coated sand. Water Research, 2016, 92, 113-120.	11.3	66
76	<i>In Situ</i> Silver Decoration on Graphene Oxide-Treated Thin Film Composite Forward Osmosis Membranes: Biocidal Properties and Regeneration Potential. Environmental Science and Technology Letters, 2016, 3, 13-18.	8.7	86
77	Effects of Rhamnolipid and Carboxymethylcellulose Coatings on Reactivity of Palladium-Doped Nanoscale Zerovalent Iron Particles. Environmental Science & Technology, 2016, 50, 1812-1820.	10.0	46
78	Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: characterization, transport and viability. Environmental Science: Nano, 2016, 3, 127-137.	4.3	12
79	Effect of tannic and gallic acids alone or in combination with carbenicillin or tetracycline on <i>Chromobacterium violaceum</i> CV026 growth, motility, and biofilm formation. Canadian Journal of Microbiology, 2015, 61, 487-494.	1.7	12
80	Cellulose nanocrystals with tunable surface charge for nanomedicine. Nanoscale, 2015, 7, 16647-16657.	5.6	94
81	Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria. Applied and Environmental Microbiology, 2015, 81, 3782-3792.	3.1	62
82	QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. Colloids and Surfaces B: Biointerfaces, 2015, 136, 928-934.	5.0	35
83	Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Water Research, 2015, 68, 354-363.	11.3	43
84	Alkaloids Modulate Motility, Biofilm Formation and Antibiotic Susceptibility of Uropathogenic Escherichia coli. PLoS ONE, 2014, 9, e112093.	2.5	39
85	Interpreting Deposition Behavior of Polydisperse Surface-Modified Nanoparticles Using QCM-D and Sand-Packed Columns. Environmental Engineering Science, 2014, 31, 326-337.	1.6	20
86	Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 2014, 50, 80-89.	11.3	115
87	Transport, motility, biofilm forming potential andÂsurvival of Bacillus subtilis exposed to cold temperature and freeze–thaw. Water Research, 2014, 58, 239-247.	11.3	27
88	Investigating electrochemical removal of bacterial biofilms from stainless steel substrates. Colloids and Surfaces B: Biointerfaces, 2014, 117, 152-157.	5.0	39
89	The road to nowhere: equilibrium partition coefficients for nanoparticles. Environmental Science: Nano, 2014, 1, 317-323.	4.3	129
90	Direct Detection of the Gel–Fluid Phase Transition of a Single Supported Phospholipid Bilayer Using Quartz Crystal Microbalance with Dissipation Monitoring. Analytical Chemistry, 2014, 86, 8017-8020.	6.5	25

#	Article	IF	CITATIONS
91	Evaluating the Binding of Selected Biomolecules to Cranberry Derived Proanthocyanidins Using the Quartz Crystal Microbalance. Biomacromolecules, 2014, 15, 1375-1381.	5.4	9
92	Effects of Environmental and Clinical Interferents on the Host Capture Efficiency of Immobilized Bacteriophages. Langmuir, 2014, 30, 3184-3190.	3.5	18
93	Transport of Industrial PVP-Stabilized Silver Nanoparticles in Saturated Quartz Sand Coated with <i>Pseudomonas aeruginosa</i> PAO1 Biofilm of Variable Age. Environmental Science & Technology, 2014, 48, 2715-2723.	10.0	61
94	Going viral: Designing bioactive surfaces with bacteriophage. Colloids and Surfaces B: Biointerfaces, 2014, 124, 2-16.	5.0	69
95	Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates. Colloids and Surfaces B: Biointerfaces, 2013, 110, 275-280.	5.0	12
96	Using the Quartz Crystal Microbalance with Dissipation Monitoring to Evaluate the Size of Nanoparticles Deposited on Surfaces. ACS Nano, 2013, 7, 7833-7843.	14.6	87
97	Deposition Kinetics of Quantum Dots and Polystyrene Latex Nanoparticles onto Alumina: Role of Water Chemistry and Particle Coating. Environmental Science & Technology, 2013, 47, 2212-2220.	10.0	51
98	Cranberry impairs selected behaviors essential for virulence in <i>Proteus mirabilis</i> HI4320. Canadian Journal of Microbiology, 2013, 59, 430-436.	1.7	21
99	Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters. Water Research, 2013, 47, 5889-5900.	11.3	40
100	Rhamnolipid Biosurfactant and Soy Protein Act as Effective Stabilizers in the Aggregation and Transport of Palladium-Doped Zerovalent Iron Nanoparticles in Saturated Porous Media. Environmental Science & Technology, 2013, 47, 13355-13364.	10.0	89
101	Short-Term Inactivation Rates of Selected Gram-Positive and Gram-Negative Bacteria Attached to Metal Oxide Mineral Surfaces: Role of Solution and Surface Chemistry. Environmental Science & Technology, 2013, 47, 5729-5737.	10.0	26
102	Formation of biofilms under phage predation: considerations concerning a biofilm increase. Biofouling, 2013, 29, 457-468.	2.2	74
103	Role of Cold Climate and Freeze–Thaw on the Survival, Transport, and Virulence of <i>Yersinia enterocolitica</i> . Environmental Science & Technology, 2013, 47, 14169-14177.	10.0	27
104	Impact of Media Aging on the Removal of <i>Cryptosporidium</i> in Granular Media Filters. Journal of Environmental Engineering, ASCE, 2013, 139, 603-611.	1.4	7
105	Evolution of Pseudomonas aeruginosa Virulence as a Result of Phage Predation. Applied and Environmental Microbiology, 2013, 79, 6110-6116.	3.1	74
106	Impact of kaolinite clay particles on the filtration of Cryptosporidium-sized microspheres. Water Science and Technology: Water Supply, 2013, 13, 1583-1592.	2.1	2
107	Mobility of Functionalized Quantum Dots and a Model Polystyrene Nanoparticle in Saturated Quartz Sand and Loamy Sand. Environmental Science & Technology, 2012, 46, 4449-4457.	10.0	93
108	Transport of two metal oxide nanoparticles in saturated granular porous media: Role of water chemistry and particle coating. Water Research, 2012, 46, 1273-1285.	11.3	97

#	Article	IF	CITATIONS
109	Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 2012, 46, 1735-1744.	11.3	139
110	Tannin derived materials can block swarming motility and enhance biofilm formation in <i>Pseudomonas aeruginosa</i> . Biofouling, 2012, 28, 1063-1076.	2.2	46
111	Transport Behavior of Selected Nanoparticles with different Surface Coatings in Granular Porous Media coated with <i>Pseudomonas aeruginosa</i> Biofilm. Environmental Science & Technology, 2012, 46, 6942-6949.	10.0	87
112	Physicochemical characterization of engineered nanoparticles under physiological conditions: Effect of culture media components and particle surface coating. Colloids and Surfaces B: Biointerfaces, 2012, 91, 198-204.	5.0	45
113	Pomegranate materials inhibit flagellin gene expression and flagellar-propelled motility of uropathogenic Escherichia coli strain CFT073. FEMS Microbiology Letters, 2012, 334, 87-94.	1.8	22
114	Preparation and Thermo-Mechanical Characterization of Chitosan Loaded Methylcellulose-Based Biodegradable Films: Effects of Gamma Radiation. Journal of Polymers and the Environment, 2012, 20, 43-52.	5.0	19
115	Bacterial Capture Efficiency and Antimicrobial Activity of Phage-Functionalized Model Surfaces. Langmuir, 2011, 27, 5472-5480.	3.5	62
116	Method for the Direct Observation and Quantification of Survival of Bacteria Attached to Negatively or Positively Charged Surfaces in an Aqueous Medium. Environmental Science & Technology, 2011, 45, 8345-8351.	10.0	41
117	Induction of a State of Iron Limitation in Uropathogenic <i>Escherichia coli</i> CFT073 by Cranberry-Derived Proanthocyanidins as Revealed by Microarray Analysis. Applied and Environmental Microbiology, 2011, 77, 1532-1535.	3.1	19
118	Inhibition of Escherichia coli CFT073 <i>fliC</i> Expression and Motility by Cranberry Materials. Applied and Environmental Microbiology, 2011, 77, 6852-6857.	3.1	84
119	Fate and Transport of Microbial Contaminants in Groundwater. , 2011, , 715-726.		16
120	The Swarming Motility of Pseudomonas aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials. Applied and Environmental Microbiology, 2011, 77, 3061-3067.	3.1	230
121	Perturbation of Host Cell Cytoskeleton by Cranberry Proanthocyanidins and Their Effect on Enteric Infections. PLoS ONE, 2011, 6, e27267.	2.5	22
122	A modified microbial adhesion to hydrocarbons assay to account for the presence of hydrocarbon droplets. Journal of Colloid and Interface Science, 2010, 344, 492-496.	9.4	51
123	Investigation of Laboratory-Scale and Pilot-Scale Attached Growth Ammonia Removal Kinetics at Cold Temperature and Low Influent Carbon. Water Quality Research Journal of Canada, 2010, 45, 427-436.	2.7	21
124	Mitigation of Urban Stormwater and Polluted River Water Impacts on Water Quality with Riverbank Filtration. , 2010, , 165-198.		0
125	Deposition of Carboxymethylcellulose-Coated Zero-Valent Iron Nanoparticles onto Silica: Roles of Solution Chemistry and Organic Molecules. Langmuir, 2010, 26, 12832-12840.	3.5	89
126	Aggregation and Deposition of Engineered Nanomaterials in Aquatic Environments: Role of Physicochemical Interactions. Environmental Science & Technology, 2010, 44, 6532-6549.	10.0	986

8

#	Article	IF	CITATIONS
127	Effect of Dissolved Oxygen on Two Bacterial Pathogens Examined using ATR-FTIR Spectroscopy, Microelectrophoresis, and Potentiometric Titration. Environmental Science & Technology, 2010, 44, 4136-4141.	10.0	18
128	Cranberry derived proanthocyanidins can prevent pathogen invasion of kidney epithelial cells. Food Research International, 2010, 43, 922-924.	6.2	16
129	Transport of selected bacterial pathogens in agricultural soil and quartz sand. Water Research, 2010, 44, 1182-1192.	11.3	78
130	Optimal preparation and purification of PRD1-like bacteriophages for use in environmental fate and transport studies. Water Research, 2010, 44, 1114-1125.	11.3	29
131	A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosensors and Bioelectronics, 2009, 24, 2137-2142.	10.1	83
132	Influence of Solution Chemistry on the Deposition and Detachment Kinetics of a CdTe Quantum Dot Examined Using a Quartz Crystal Microbalance. Environmental Science & Technology, 2009, 43, 3176-3182.	10.0	79
133	Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. Water Research, 2009, 43, 2631-2638.	11.3	35
134	Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environmental Science & amp; Technology, 2009, 43, 7277-7284.	10.0	500
135	Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid. Environmental Science & Technology, 2009, 43, 1282-1286.	10.0	409
136	Deposition of TiO ₂ Nanoparticles onto Silica Measured Using a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2009, 25, 6062-6069.	3.5	101
137	Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. Journal of Colloid and Interface Science, 2008, 321, 74-83.	9.4	253
138	Role of Oxygen Tension on the Transport and Retention of Two Pathogenic Bacteria in Saturated Porous Media. Environmental Science & Technology, 2008, 42, 9178-9183.	10.0	14
139	Cranberry Derived Proanthocyanidins Reduce Bacterial Adhesion to Selected Biomaterials. Langmuir, 2008, 24, 10273-10281.	3.5	54
140	Relevance of Nontoxigenic Strains as Surrogates forEscherichia coliO157:H7 in Groundwater Contamination Potential:Â Role of Temperature and Cell Acclimation Time. Environmental Science & Technology, 2007, 41, 4332-4338.	10.0	49
141	Student Expectations from an Environmental Professional Society. Environmental Engineering Science, 2007, 24, 1201-1217.	1.6	1
142	Modeling microbial transport in porous media: Traditional approaches and recent developments. Advances in Water Resources, 2007, 30, 1455-1469.	3.8	262
143	Colloid and Microbe Migration in Granular Environments: A Discussion of Modelling Methods. , 2007, , 119-142.		28
144	Application of a dual deposition mode model to evaluate transport ofEscherichia coliD21 in porous media. Water Resources Research, 2006, 42, .	4.2	29

#	Article	IF	CITATIONS
145	Multi-scale Cryptosporidium/sand interactions in water treatment. Water Research, 2006, 40, 3315-3331.	11.3	55
146	Reply to Comment on Breakdown of Colloid Filtration Theory:Â Role of the Secondary Energy Minimum and Surface Charge Heterogeneities. Langmuir, 2005, 21, 10896-10897.	3.5	10
147	Spatial Distributions ofCryptosporidiumOocysts in Porous Media:Â Evidence for Dual Mode Deposition. Environmental Science & Technology, 2005, 39, 3620-3629.	10.0	116
148	Response to Comment on "Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media― Environmental Science & Technology, 2005, 39, 5496-5497.	10.0	3
149	Breakdown of Colloid Filtration Theory:Â Role of the Secondary Energy Minimum and Surface Charge Heterogeneities. Langmuir, 2005, 21, 841-852.	3.5	401
150	Deviation from the Classical Colloid Filtration Theory in the Presence of Repulsive DLVO Interactions. Langmuir, 2004, 20, 10818-10828.	3.5	372
151	Correlation Equation for Predicting Single-Collector Efficiency in Physicochemical Filtration in Saturated Porous Media. Environmental Science & amp; Technology, 2004, 38, 529-536.	10.0	983
152	Transport ofCryptosporidiumOocysts in Porous Media:Â Role of Straining and Physicochemical Filtrationâ€. Environmental Science & Technology, 2004, 38, 5932-5938.	10.0	219
153	Interpreting Deposition Patterns of Microbial Particles in Laboratory-Scale Column Experiments. Environmental Science & Technology, 2003, 37, 616-623.	10.0	168
154	Peer Reviewed: The Promise of Bank Filtration. Environmental Science & Technology, 2002, 36, 422A-428A.	10.0	224
155	Microfluidic Study of Bacterial Attachment on and Detachment from Zinc Oxide Nanopillars. ACS Biomaterials Science and Engineering, 0, , .	5.2	3