Tian-Gang Luan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3135703/publications.pdf

Version: 2024-02-01

85 3,148 32 52 papers citations h-index g-index

85 85 85 3805
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Metabolomics analysis of the 3D L-02 cell cultures revealing the key role of metabolism of amino acids in ameliorating hepatotoxicity of perfluorooctanoic acid. Science of the Total Environment, 2022, 806, 150438.	8.0	4
2	Identification of suspended particulate matters as the hotspot of polycyclic aromatic hydrocarbon degradation-related bacteria and genes in the Pearl River Estuary using metagenomic approaches. Chemosphere, 2022, 286, 131668.	8.2	14
3	Characterization of the mercury-binding proteins in tuna and salmon sashimi: Implications for health risk of mercury in food. Chemosphere, 2021, 263, 128110.	8.2	19
4	Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. Journal of Chromatography A, 2021, 1640, 461961.	3.7	37
5	Comparative responses of cell growth and related extracellular polymeric substances in Tetraselmis sp. to nonylphenol, bisphenol A and 17α-ethinylestradiol. Environmental Pollution, 2021, 274, 116605.	7.5	16
6	Non-targeted metabolomics of multiple human cells revealing differential toxic effects of perfluorooctanoic acid. Journal of Hazardous Materials, 2021, 409, 125017.	12.4	24
7	13C isotope-based metabolic flux analysis revealing cellular landscape of glucose metabolism in human liver cells exposed to perfluorooctanoic acid. Science of the Total Environment, 2021, 770, 145329.	8.0	8
8	Three-Dimensional Imaging of Whole-Body Zebrafish Revealed Lipid Disorders Associated with Niemann–Pick Disease Type C1. Analytical Chemistry, 2021, 93, 8178-8187.	6.5	19
9	Mapping the distribution of perfluoroalkyl substances in zebrafishes by liquid extraction surface analysis mass spectrometry. Talanta, 2021, 231, 122377.	5 . 5	3
10	Discovery of Potential Lipid Biomarkers for Human Colorectal Cancer by In-Capillary Extraction Nanoelectrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 13089-13098.	6.5	15
11	Experimental and theoretical studies into the hydroxyl radical mediated transformation of propylparaben to methylparaben in the presence of dissolved organic matter surrogate. Water Research, 2021, 204, 117623.	11.3	6
12	Effects of undissociated SiO2 and TiO2 nano-particles on molting of Daphnia pulex: Comparing with dissociated ZnO nano particles. Ecotoxicology and Environmental Safety, 2021, 222, 112491.	6.0	16
13	Occurrence, mass loads, and ecological risks of amphetamine-like substances in a rural area of South China. Science of the Total Environment, 2021, 797, 149058.	8.0	5
14	Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions. Water Research, 2021, 207, 117782.	11.3	43
15	Multifunctional Graphene-Oxide-Reinforced Dissolvable Polymeric Microneedles for Transdermal Drug Delivery. ACS Applied Materials & Interfaces, 2020, 12, 352-360.	8.0	74
16	Recovery of subtropical coastal intertidal system prokaryotes from a destruction event and the role of extracellular polymeric substances in the presence of endocrine disrupting chemicals. Environment International, 2020, 144, 106023.	10.0	9
17	Lab-on-Membrane Platform Coupled with Paper Spray Ionization for Analysis of Prostate-Specific Antigen in Clinical Settings. Analytical Chemistry, 2020, 92, 13298-13304.	6.5	18
18	Determination of polybrominated diphenyl ethers and metabolites by single-drop microextraction and GC–MS/MS. SN Applied Sciences, 2020, 2, 1.	2.9	2

#	Article	IF	Citations
19	Lipid analysis and lipidomics investigation by ambient mass spectrometry. TrAC - Trends in Analytical Chemistry, 2020, 128, 115924.	11.4	11
20	Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary. Science of the Total Environment, 2020, 739, 139774.	8.0	16
21	Identification and characterization of Gd-binding proteins in NIH-3T3 cells. Talanta, 2020, 219, 121281.	5.5	10
22	Quantitation of polymeric-microneedle-delivered HA15 in tissues using liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113230.	2.8	3
23	Quantum chemical calculation to elucidate the biodegradation pathway of methylphenanthrene by green microalgae. Water Research, 2020, 173, 115598.	11.3	6
24	Fetal bovine serum attenuating perfluorooctanoic acid-inducing toxicity to multiple human cell lines via albumin binding. Journal of Hazardous Materials, 2020, 389, 122109.	12.4	21
25	Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. Science of the Total Environment, 2020, 714, 136689.	8.0	30
26	Recent advances of ambient mass spectrometry imaging for biological tissues: A review. Analytica Chimica Acta, 2020, 1117, 74-88.	5.4	46
27	A simple and cost-effective approach to fabricate tunable length polymeric microneedle patches for controllable transdermal drug delivery. RSC Advances, 2020, 10, 15541-15546.	3.6	19
28	A microscale solid-phase microextraction probe for the <i>in situ</i> analysis of perfluoroalkyl substances and lipids in biological tissues using mass spectrometry. Analyst, The, 2019, 144, 5637-5645.	3.5	18
29	Dysbiosis of gut microbiota by dietary exposure of three graphene-family materials in zebrafish (Danio) Tj ETQq1	1 9.7843	14 rgBT /Ove
30	The development of a cell-based model for the assessment of carcinogenic potential upon long-term PM2.5 exposure. Environment International, 2019, 131, 104943.	10.0	39
31	Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum. Science of the Total Environment, 2019, 689, 287-294.	8.0	19
32	Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea. Ecotoxicology and Environmental Safety, 2019, 185, 109722.	6.0	14
33	Occurrence of antibiotic resistance genes in extracellular and intracellular DNA from sediments collected from two types of aquaculture farms. Chemosphere, 2019, 234, 520-527.	8.2	50
34	Bacterial resistance to lead: Chemical basis and environmental relevance. Journal of Environmental Sciences, 2019, 85, 46-55.	6.1	15
35	Coupling PaternÃ ² -BÃ ¹ /4chi Reaction with Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for In Vivo and Microscale Profiling of Lipid Câ•C Location Isomers in Complex Biological Tissues. Analytical Chemistry, 2019, 91, 4592-4599.	6.5	35
36	Quantitative Proteomic Analysis to Understand the Mechanisms of Zinc Oxide Nanoparticle Toxicity to <i>Daphnia pulex</i> (Crustacea: Daphniidae): Comparing with Bulk Zinc Oxide and Zinc Salt. Environmental Science & Daphniidae); 53, 5436-5444.	10.0	32

#	Article	IF	CITATIONS
37	Metagenomic characterization of antibiotic resistance genes in Antarctic soils. Ecotoxicology and Environmental Safety, 2019, 176, 300-308.	6.0	58
38	A Luminescent Probe for Highly Selective Cu ²⁺ Sensing Using a Lanthanideâ€Doped Metal Organic Framework with Large Pores. European Journal of Inorganic Chemistry, 2019, 2019, 206-211.	2.0	17
39	A unique Pb-binding flagellin as an effective remediation tool for Pb contamination in aquatic environment. Journal of Hazardous Materials, 2019, 363, 34-40.	12.4	28
40	Natural Porphyrins Accelerating the Phototransformation of Benzo[a]pyrene in Water. Environmental Science & Environmental Scie	10.0	19
41	Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. Water Research, 2018, 134, 200-208.	11.3	111
42	Overproduction of microbial extracellular polymeric substances in subtropical intertidal sediments in response to endocrine disrupting chemicals. Science of the Total Environment, 2018, 624, 673-682.	8.0	18
43	In situ derivatization and hollowâ€fiber liquidâ€phase microextraction to determine sulfonamides in water using UHPLC with fluorescence detection. Journal of Separation Science, 2018, 41, 1651-1662.	2.5	29
44	Surface-Modified Wooden-Tip Electrospray Ionization Mass Spectrometry for Enhanced Detection of Analytes in Complex Samples. Analytical Chemistry, 2018, 90, 1759-1766.	6.5	58
45	Biocompatible Surface-Coated Probe for <i>in Vivo</i> , <i>in Situ</i> , and Microscale Lipidomics of Small Biological Organisms and Cells Using Mass Spectrometry. Analytical Chemistry, 2018, 90, 6936-6944.	6.5	61
46	Transformation of aqueous sulfonamides under horseradish peroxidase and characterization of sulfur dioxide extrusion products from sulfadiazine. Chemosphere, 2018, 200, 164-172.	8.2	33
47	Comparative proteomics and codon substitution analysis reveal mechanisms of differential resistance to hypoxia in congeneric snails. Journal of Proteomics, 2018, 172, 36-48.	2.4	9
48	Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations. Environmental Pollution, 2018, 243, 824-832.	7.5	21
49	Rapid and on-site analysis of amphetamine-type illicit drugs in whole blood and raw urine by slug-flow microextraction coupled with paper spray mass spectrometry. Analytica Chimica Acta, 2018, 1032, 75-82.	5.4	32
50	Single-cell analysis by ambient mass spectrometry. TrAC - Trends in Analytical Chemistry, 2017, 90, 14-26.	11.4	79
51	Surface-coated wooden-tip electrospray ionization mass spectrometry for determination of trace fluoroquinolone and macrolide antibiotics in water. Analytica Chimica Acta, 2017, 954, 52-59.	5.4	61
52	Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil. Marine Pollution Bulletin, 2017, 114, 926-933.	5.0	26
53	Comparison on the effects of water-borne and dietary-borne accumulated ZnO nanoparticles on Daphnia magna. Chemosphere, 2017, 189, 94-103.	8.2	15
54	Polycyclic aromatic hydrocarbons (PAHs) enrich their degrading genera and genes in human-impacted aquatic environments. Environmental Pollution, 2017, 230, 936-944.	7. 5	37

#	Article	IF	CITATIONS
55	Effects of endocrine disrupting chemicals (EDCs) on bacterial communities in mangrove sediments. Marine Pollution Bulletin, 2017, 122, 122-128.	5.0	23
56	Fully automatic single-drop microextraction with one-setp extraction and derivatization and its application for rapid analysis of hydroxylated polycyclic aromatic hydrocarbons in seawaters. Talanta, 2017, 164, 727-734.	5 . 5	24
57	Polycyclic aromatic hydrocarbons (PAHs) enriching antibiotic resistance genes (ARGs) in the soils. Environmental Pollution, 2017, 220, 1005-1013.	7.5	117
58	Novosphingobium guangzhouense sp. nov., with the ability to degrade 1-methylphenanthrene. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 489-497.	1.7	20
59	Metagenomic Analysis Revealing Antibiotic Resistance Genes (ARGs) and Their Genetic Compartments in the Tibetan Environment. Environmental Science & Eamp; Technology, 2016, 50, 6670-6679.	10.0	155
60	Combined aggregation induced emission (AIE), photochromism and photoresponsive wettability in simple dichloro-substituted triphenylethylene derivatives. Chemical Science, 2016, 7, 5302-5306.	7.4	95
61	Monthly variation and vertical distribution of parent and alkyl polycyclic aromatic hydrocarbons in estuarine water column: Role of suspended particulate matter. Environmental Pollution, 2016, 216, 599-607.	7.5	14
62	Slug-flow microextraction coupled with paper spray mass spectrometry for rapid analysis of complex samples. Analytica Chimica Acta, 2016, 940, 143-149.	5 . 4	29
63	Coupling liquid-phase microextraction with paper spray for rapid analysis of malachite green, crystal violet and their metabolites in complex samples using mass spectrometry. Analytical Methods, 2016, 8, 6651-6656.	2.7	25
64	Coupling solid-phase microextraction with ambient mass spectrometry: Strategies and applications. TrAC - Trends in Analytical Chemistry, 2016, 85, 61-72.	11.4	82
65	Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment. Environmental Science & Environmental Sc	10.0	30
66	Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression. Marine Pollution Bulletin, 2016, 105, 73-80.	5.0	27
67	Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water. Scientific Reports, 2015, 5, 12776.	3.3	35
68	Characterizing the parent and alkyl polycyclic aromatic hydrocarbons in the Pearl River Estuary, Daya Bay and northern South China Sea: Influence of riverine input. Environmental Pollution, 2015, 199, 66-72.	7.5	71
69	Determination of 13 endocrine disrupting chemicals in sediments by gas chromatography–mass spectrometry using subcritical water extraction coupled with dispersed liquid–liquid microextraction and derivatization. Analytica Chimica Acta, 2015, 866, 41-47.	5.4	36
70	Characterizing the parent and oxygenated polycyclic aromatic hydrocarbons in mangrove sediments of Hong Kong. Marine Pollution Bulletin, 2015, 98, 335-340.	5. 0	17
71	Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid–liquid extraction and gas chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 992, 96-102.	2.3	15
72	Surface-Coated Probe Nanoelectrospray Ionization Mass Spectrometry for Analysis of Target Compounds in Individual Small Organisms. Analytical Chemistry, 2015, 87, 9923-9930.	6.5	71

#	Article	IF	CITATIONS
73	Identification of mercury methylation product by tert-butyl compounds in aqueous solution under light irradiation. Marine Pollution Bulletin, 2015, 98, 40-46.	5.0	8
74	Genetic Basis of Differential Heat Resistance between Two Species of Congeneric Freshwater Snails: Insights from Quantitative Proteomics and Base Substitution Rate Analysis. Journal of Proteome Research, 2015, 14, 4296-4308.	3.7	30
75	Occurrences and distribution of sulfonamide and tetracycline resistance genes in the Yangtze River Estuary and nearby coastal area. Marine Pollution Bulletin, 2015, 100, 304-310.	5.0	81
76	Mass spectrometry-based lipidomics analysis using methyl tert-butyl ether extraction in human hepatocellular carcinoma tissues. Analytical Methods, 2015, 7, 8466-8471.	2.7	4
77	A comparative study of biodegradability of a carcinogenic aromatic amine (4,4′-Diaminodiphenylmethane) with OECD 301 test methods. Ecotoxicology and Environmental Safety, 2015, 111, 123-130.	6.0	4
78	Coupling Solid-Phase Microextraction with Ambient Mass Spectrometry Using Surface Coated Wooden-Tip Probe for Rapid Analysis of Ultra Trace Perfluorinated Compounds in Complex Samples. Analytical Chemistry, 2014, 86, 11159-11166.	6.5	97
79	Complex effects of two presumably antagonistic endocrine disrupting compounds on the goldfish Carassius aumtus: A comprehensive study with multiple toxicological endpoints. Aquatic Toxicology, 2014, 155, 43-51.	4.0	13
80	Strategies for coupling solid-phase microextraction with mass spectrometry. TrAC - Trends in Analytical Chemistry, 2014, 55, 55-67.	11.4	94
81	Occurrence and distribution of phthalate esters in riverine sediments from the Pearl River Delta region, South China. Marine Pollution Bulletin, 2014, 83, 358-365.	5.0	91
82	Application of fully automatic hollow fiber liquid phase microextraction to assess the distribution of organophosphate esters in the Pearl River Estuaries. Science of the Total Environment, 2014, 470-471, 263-269.	8.0	88
83	Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere, 2014, 99, 152-159.	8.2	102
84	Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresource Technology, 2010, 101, 6950-6961.	9.6	129
85	Determination of hydroxy metabolites of polycyclic aromatic hydrocarbons by fully automated solid-phase microextraction derivatization and gas chromatography–mass spectrometry. Journal of Chromatography A, 2007, 1173, 37-43.	3.7	42