Meritxell Huch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3135428/publications.pdf

Version: 2024-02-01

		87888	155660
55	13,268	38	55
papers	citations	h-index	g-index
61	61	61	16095
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Science Advances, 2022, 8, eabh2635.	10.3	35
2	RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering theÂliver lipid metabolic ground-state. Nature Communications, 2022, 13, 334.	12.8	28
3	Hepatobiliary tumor organoids for personalized medicine: a multicenter view on establishment, limitations, and future directions. Cancer Cell, 2022, 40, 226-230.	16.8	10
4	Dual Targeting of G9a and DNA Methyltransferaseâ€1 for the Treatment of Experimental Cholangiocarcinoma. Hepatology, 2021, 73, 2380-2396.	7.3	26
5	Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biology, 2021, 19, 37.	3.8	54
6	Voices of biotech research. Nature Biotechnology, 2021, 39, 281-286.	17.5	3
7	Organoids, Where We Stand and Where We Go. Trends in Molecular Medicine, 2021, 27, 416-418.	6.7	14
8	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	11.1	133
9	Liver regeneration and inflammation: from fundamental science to clinical applications. Nature Reviews Molecular Cell Biology, 2021, 22, 608-624.	37.0	122
10	Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. ELife, 2021, 10 , .	6.0	51
11	Dynamic cell contacts between periportal mesenchyme and ductal epithelium act as a rheostat for liver cell proliferation. Cell Stem Cell, 2021, 28, 1907-1921.e8.	11.1	30
12	Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatology International, 2020, 14, 127-137.	4.2	44
13	Long-term expansion, genomic stability and in vivo safety of adult human pancreas organoids. BMC Developmental Biology, 2020, 20, 4.	2.1	67
14	Liver organoids: from basic research to therapeutic applications. Gut, 2019, 68, 2228-2237.	12.1	222
15	Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nature Cell Biology, 2019, 21, 1321-1333.	10.3	102
16	Lgr5+ stem/progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development (Cambridge), 2019, 146, .	2.5	51
17	Disease modelling in human organoids. DMM Disease Models and Mechanisms, $2019,12,.$	2.4	254
18	Universality of clone dynamics during tissue development. Nature Physics, 2018, 14, 469-474.	16.7	37

#	Article	IF	CITATIONS
19	Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports, 2018, 10, 712-724.	4.8	106
20	Mouse Model of Alagille Syndrome and Mechanisms of Jagged1 Missense Mutations. Gastroenterology, 2018, 154, 1080-1095.	1.3	92
21	Neurogenin3 phosphorylation controls reprogramming efficiency of pancreatic ductal organoids into endocrine cells. Scientific Reports, 2018, 8, 15374.	3.3	18
22	The balancing act of the liver: tissue regeneration versus fibrosis. Journal of Clinical Investigation, 2018, 128, 85-96.	8.2	148
23	Tumours build their niche. Nature, 2017, 545, 292-293.	27.8	12
24	Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation. Developmental Cell, 2017, 41, 274-286.e5.	7.0	67
25	Long-Term Adult Feline Liver Organoid Cultures for Disease Modeling ofÂHepatic Steatosis. Stem Cell Reports, 2017, 8, 822-830.	4.8	82
26	The hope and the hype of organoid research. Development (Cambridge), 2017, 144, 938-941.	2.5	303
27	Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nature Medicine, 2017, 23, 1424-1435.	30.7	905
28	Cellular plasticity in the adult liver and stomach. Journal of Physiology, 2016, 594, 4815-4825.	2.9	17
29	Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538, 260-264.	27.8	759
30	Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nature Protocols, 2016, 11, 1724-1743.	12.0	527
31	Chromosomal abnormalities in hepatic cysts point to novel polycystic liver disease genes. European Journal of Human Genetics, 2016, 24, 1707-1714.	2.8	14
32	Organoids from adult liver and pancreas: Stem cell biology and biomedical utility. Developmental Biology, 2016, 420, 251-261.	2.0	55
33	Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure. Scientific Reports, 2016, 6, 22154.	3.3	50
34	Organoids: A new in vitro model system for biomedical science and disease modelling and promising		1.0
	source for cell-based transplantation. Developmental Biology, 2016, 420, 197-198.	2.0	10
35		7.3	40

#	Article	IF	CITATIONS
37	Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, 2015, 160, 324-338.	28.9	1,584
38	The versatile and plastic liver. Nature, 2015, 517, 155-156.	27.8	10
39	InÂVitro Expansion of Human Gastric Epithelial Stem Cells and Their Responses to Bacterial Infection. Gastroenterology, 2015, 148, 126-136.e6.	1.3	595
40	Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell, 2015, 160, 299-312.	28.9	1,166
41	Building stomach in a dish. Nature Cell Biology, 2015, 17, 966-967.	10.3	4
42	Modeling mouse and human development using organoid cultures. Development (Cambridge), 2015, 142, 3113-3125.	2.5	386
43	Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids. Stem Cell Reports, 2015, 5, 895-907.	4.8	84
44	Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature, 2014, 513, 422-425.	27.8	315
45	The plastic liver: differentiated cells, stem cells, every cell?. Journal of Clinical Investigation, 2014, 124, 5099-5102.	8.2	24
46	Differentiated Troy+ Chief Cells Act as Reserve Stem Cells to Generate All Lineages of the Stomach Epithelium. Cell, 2013, 155, 357-368.	28.9	445
47	Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO Journal, 2013, 32, 2708-2721.	7.8	562
48	In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494, 247-250.	27.8	1,239
49	Lgr5 ⁺ liver stem cells, hepatic organoids and regenerative medicine. Regenerative Medicine, 2013, 8, 385-387.	1.7	77
50	Diabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response to Perinatal and Adult Metabolic Demand. Cell, 2012, 151, 1595-1607.	28.9	202
51	Lgr5+ve Stem/Progenitor Cells Contribute to Nephron Formation during Kidney Development. Cell Reports, 2012, 2, 540-552.	6.4	196
52	Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods, 2012, 9, 81-83.	19.0	295
53	Stem cells and cancer of the stomach and intestine. Molecular Oncology, 2010, 4, 373-384.	4.6	105
54	Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell, 2010, 6, 25-36.	11.1	1,315

#	Article	lF	CITATIONS
55	Urokinase-Type Plasminogen Activator Receptor Transcriptionally Controlled Adenoviruses Eradicate Pancreatic Tumors and Liver Metastasis in Mouse Models. Neoplasia, 2009, 11, 518-IN6.	5.3	31