HoKwon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/313523/publications.pdf Version: 2024-02-01

HOKWON KIM

#	Article	IF	CITATIONS
1	A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011, 21, 3324-3334.	6.7	1,239
2	Insulator to Semimetal Transition in Graphene Oxide. Journal of Physical Chemistry C, 2009, 113, 15768-15771.	3.1	577
3	Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 2012, 6, 3614-3623.	14.6	370
4	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
5	Highly Uniform 300 mm Wafer-Scale Deposition of Single and Multilayered Chemically Derived Graphene Thin Films. ACS Nano, 2010, 4, 524-528.	14.6	209
6	Suppressing Nucleation in Metal–Organic Chemical Vapor Deposition of MoS ₂ Monolayers by Alkali Metal Halides. Nano Letters, 2017, 17, 5056-5063.	9.1	185
7	Epitaxial Graphene Growth and Shape Dynamics on Copper: Phase-Field Modeling and Experiments. Nano Letters, 2013, 13, 5692-5697.	9.1	142
8	Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Research, 2019, 12, 2646-2652.	10.4	104
9	Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion. Npj 2D Materials and Applications, 2018, 2, .	7.9	51
10	Optoelectronic properties of graphene thin films deposited by a Langmuir–Blodgett assembly. Nanoscale, 2013, 5, 12365.	5.6	44
11	Modeling of the self-limited growth in catalytic chemical vapor deposition of graphene. New Journal of Physics, 2013, 15, 053012.	2.9	40
12	Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption. Applied Physics Letters, 2014, 105, .	3.3	38
13	Solution-processable organic dielectrics for graphene electronics. Nanotechnology, 2012, 23, 344017.	2.6	33
14	Electronic Properties of Transferable Atomically Thin MoSe ₂ /h-BN Heterostructures Grown on Rh(111). ACS Nano, 2018, 12, 11161-11168.	14.6	17
15	Influence of Cu substrate topography on the growth morphology of chemical vapour deposited graphene. Carbon, 2013, 65, 7-12.	10.3	14
16	Epitaxial growth in dislocation-free strained asymmetric alloy films. Physical Review B, 2010, 81, .	3.2	12
17	Chemistry and electronics of single layer MoS ₂ domains from photoelectron spectromicroscopy using laboratory excitation sources. Surface and Interface Analysis, 2016, 48, 465-469.	1.8	10
	Free-standing electronic character of monolayer <mml:math< td=""><td></td><td></td></mml:math<>		

18 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn>2</mml:max</p>
2
18 van der Waals epitaxy. Physical Review B, 2016, 94, .

НоКwon Кім

#	Article	IF	CITATIONS
19	Correlating chemical and electronic states from quantitative photoemission electron microscopy of transition-metal dichalcogenide heterostructures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	5
20	Doping characteristics of iodine on as-grown chemical vapor deposited graphene on Pt. Ultramicroscopy, 2015, 159, 470-475.	1.9	3
21	Large area deposition of graphene thin films by Langmuir-Blodgett assembly and their optoelectronic properties. , 2009, , .		1
22	Low-voltage graphene transistors based on self-assembled monolayer nanodielectrics. Materials Research Society Symposia Proceedings, 2012, 1451, 179-184.	0.1	0