
Alireza Moshaverinia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3134037/publications.pdf Version: 2024-02-01

ALIDEZA MOSHAVEDINIA

#	Article	IF	CITATIONS
1	Immunomodulatory microneedle patch for periodontal tissue regeneration. Matter, 2022, 5, 666-682.	10.0	49
2	Engineered Delivery of Dental Stemâ€Cellâ€Derived Extracellular Vesicles for Periodontal Tissue Regeneration. Advanced Healthcare Materials, 2022, 11, e2102593.	7.6	15
3	Synthesis and characterization of a photoâ€crossâ€linked bioactive polycaprolactoneâ€based osteoconductive biocomposite. Journal of Biomedical Materials Research - Part A, 2021, 109, 1858-1868.	4.0	3
4	A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. International Journal of Oral Science, 2021, 13, 22.	8.6	12
5	Influence of Dental Pulp Harvesting Method on the Viability and Differentiation Capacity of Adult Dental Pulp-Derived Mesenchymal Stem Cells. Stem Cells International, 2021, 2021, 1-8.	2.5	3
6	RGD-Modified Alginate–GelMA Hydrogel Sheet Containing Gingival Mesenchymal Stem Cells: A Unique Platform for Wound Healing and Soft Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 3774-3782.	5.2	27
7	Whitlockite-Enabled Hydrogel for Craniofacial Bone Regeneration. ACS Applied Materials & Interfaces, 2021, 13, 35342-35355.	8.0	13
8	Bioactive glassâ€containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. Journal of Biomedical Materials Research - Part A, 2020, 108, 557-564.	4.0	20
9	New Engineered Fusion Peptide with Dual Functionality: Antibacterial and Strong Binding to Hydroxyapatite. International Journal of Peptide Research and Therapeutics, 2020, 26, 1629-1639.	1.9	3
10	Review of the Modern Dental Ceramic Restorative Materials for Esthetic Dentistry in the Minimally Invasive Age. Dental Clinics of North America, 2020, 64, 621-631.	1.8	19
11	Microenvironment Can Induce Development of Auditory Progenitor Cells from Human Gingival Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 2020, 6, 2263-2273.	5.2	6
12	A multifunctional fusion peptide for tethering to hydroxyapatite and selective capture of bone morphogenetic protein from extracellular milieu. Journal of Biomedical Materials Research - Part A, 2020, 108, 1459-1466.	4.0	0
13	An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats. Science Translational Medicine, 2020, 12, .	12.4	199
14	In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 2020, 108, 326-336.	8.3	41
15	Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. Journal of Prosthetic Dentistry, 2019, 122, 154-159.	2.8	40
16	Hierarchically Patterned Polydopamine-Containing Membranes for Periodontal Tissue Engineering. ACS Nano, 2019, 13, 3830-3838.	14.6	105
17	CAD-CAM acrylic resin prosthesis superstructure: A technique for fabricating an implant-supported fixed complete denture. Journal of Prosthetic Dentistry, 2019, 121, 378-380.	2.8	1
18	Mechanobiological Mimicry of Helper T Lymphocytes to Evaluate Cell–Biomaterials Crosstalk. Advanced Materials, 2018, 30, e1706780.	21.0	22

Alireza Moshaverinia

#	Article	IF	CITATIONS
19	Effects of an etching solution on the adhesive properties and surface microhardness of zirconia dental ceramics. Journal of Prosthetic Dentistry, 2018, 120, 447-453.	2.8	8
20	Polyserotonin Nanoparticles as Multifunctional Materials for Biomedical Applications. ACS Nano, 2018, 12, 4761-4774.	14.6	57
21	Tissue Regeneration: A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870021.	14.9	6
22	Cytokine Secreting Microparticles Engineer the Fate and the Effector Functions of Tâ€Cells. Advanced Materials, 2018, 30, 1703178.	21.0	25
23	Comparison of dimensional accuracy of conventionally and digitally manufactured intracoronal restorations. Journal of Prosthetic Dentistry, 2018, 119, 233-238.	2.8	25
24	Minced Pulp as Source of Pulpal Mesenchymal Stem Cells with Odontogenic Differentiation Capacity. Journal of Endodontics, 2018, 44, 80-86.	3.1	8
25	A Multifunctional Polymeric Periodontal Membrane with Osteogenic and Antibacterial Characteristics. Advanced Functional Materials, 2018, 28, 1703437.	14.9	152
26	Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Research, 2017, 27, 559-577.	12.0	89
27	Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. Journal of Controlled Release, 2017, 253, 46-63.	9.9	231
28	Effect of different thermo–light polymerization on flexural strength of two glass ionomer cements and a glass carbomerÂcement. Journal of Prosthetic Dentistry, 2017, 118, 102-107.	2.8	21
29	Dental and orofacial mesenchymal stem cells in craniofacial regeneration: The prosthodontist's point of view. Journal of Prosthetic Dentistry, 2017, 118, 455-461.	2.8	27
30	Human Periodontal Ligament―and Gingivaâ€derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold. Advanced Healthcare Materials, 2017, 6, 1700670.	7.6	59
31	Collagen sponge functionalized with chimeric anti-BMP-2 monoclonal antibody mediates repair of nonunion tibia defects in a nonhuman primate model: An exploratory study. Journal of Biomaterials Applications, 2017, 32, 425-432.	2.4	4
32	Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage. Journal of Materials Science: Materials in Medicine, 2017, 28, 162.	3.6	47
33	Nanostructured Fibrous Membranes with Rose Spike-Like Architecture. Nano Letters, 2017, 17, 6235-6240.	9.1	72
34	Nanoscale Optoregulation of Neural Stem Cell Differentiation by Intracellular Alteration of Redox Balance. Advanced Functional Materials, 2017, 27, 1701420.	14.9	14
35	Regulation of the fate of dentalâ€derived mesenchymal stem cells using engineered alginateâ€GelMA hydrogels. Journal of Biomedical Materials Research - Part A, 2017, 105, 2957-2967.	4.0	47
36	Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomaterialia, 2017, 60, 181-189.	8.3	49

#	Article	IF	CITATIONS
37	Hydrogels in craniofacial tissue engineering. , 2017, , 47-64.		7
38	Collagen Sponge Functionalized with Chimeric Anti-BMP-2 Monoclonal Antibody Mediates Repair of Critical-Size Mandibular Continuity Defects in a Nonhuman Primate Model. BioMed Research International, 2017, 2017, 1-11.	1.9	7
39	Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGDâ€Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Periâ€Implantitis. Journal of Prosthodontics, 2016, 25, 105-115.	3.7	69
40	Effects of incorporation of nano-fluorapatite particles on microhardness, fluoride releasing properties, and biocompatibility of a conventional glass ionomer cement (GIC). Dental Materials Journal, 2016, 35, 817-821.	1.8	24
41	Biomechanical analysis of engineered bone with antiâ€BMP2 antibody immobilized on different scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1465-1473.	3.4	5
42	Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Annals of Biomedical Engineering, 2016, 44, 1908-1920.	2.5	71
43	Effect of laser-dimpled titanium surfaces on attachment of epithelial-like cells and fibroblasts. Journal of Advanced Prosthodontics, 2015, 7, 138.	2.6	20
44	Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Antiâ€Inflammatory Drug. Advanced Functional Materials, 2015, 25, 2296-2307.	14.9	66
45	Effects of the orientation of anti-BMP2 monoclonal antibody immobilized on scaffold in antibody-mediated osseous regeneration. Journal of Biomaterials Applications, 2015, 30, 558-567.	2.4	9
46	Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 153.	3.6	146
47	Biofilms in restorative dentistry: A clinical report. Journal of Prosthetic Dentistry, 2015, 113, 524-527.	2.8	2
48	MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus. Cell Metabolism, 2015, 22, 606-618.	16.2	195
49	mTOR inhibition rescues osteopenia in mice with systemic sclerosis. Journal of Experimental Medicine, 2015, 212, 73-91.	8.5	67
50	A multidisciplinary approach for the rehabilitation of a patient with an excessively worn dentition: A clinical report. Journal of Prosthetic Dentistry, 2014, 111, 259-263.	2.8	6
51	Implant-abutment interface: A comparison of the ultimate force to failure among narrow-diameter implant systems. Journal of Prosthetic Dentistry, 2014, 112, 136-142.	2.8	20
52	Application of stem cells derived from the periodontal ligament orÂgingival tissue sources for tendon tissue regeneration. Biomaterials, 2014, 35, 2642-2650.	11.4	111
53	A technique for retrieving fractured implant screws. Journal of Prosthetic Dentistry, 2014, 111, 81-83.	2.8	26
54	Full mouth rehabilitation of a young patient with partial expressions of ectodermal dysplasia: A clinical report. Journal of Prosthetic Dentistry, 2014, 112, 449-454.	2.8	5

#	Article	IF	CITATIONS
55	Mandibular implant-supported fixed dental prosthesis with a modified design: A clinical report. Journal of Prosthetic Dentistry, 2014, 111, 91-95.	2.8	3
56	Effects of setting under air pressure on the number of surface pores and irregularities of dental investment materials. Journal of Prosthetic Dentistry, 2014, 111, 150-153.	2.8	4
57	Encapsulated dentalâ€derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101, 3285-3294.	4.0	80
58	Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomaterialia, 2013, 9, 9343-9350.	8.3	96
59	Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials, 2013, 34, 6572-6579.	11.4	121
60	Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold. Tissue Engineering - Part A, 2013, 20, 131106060201007.	3.1	96
61	Functionalization of scaffolds with chimeric anti-BMP-2 monoclonal antibodies for osseous regeneration. Biomaterials, 2013, 34, 10191-10198.	11.4	32
62	A review of polyelectrolyte modifications in conventional glass-ionomer dental cements. Journal of Materials Chemistry, 2012, 22, 2824.	6.7	31
63	Click Chemistry: A Potential Platform for Development of Novel Dental Restorative Materials. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 288-292.	2.2	5
64	Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. Journal of Materials Science: Materials in Medicine, 2012, 23, 3041-3051.	3.6	111
65	Development of bacterially resistant polyurethane for coating medical devices. Biomedical Materials (Bristol), 2012, 7, 015007.	3.3	19
66	A review of powder modifications in conventional glass-ionomer dental cements. Journal of Materials Chemistry, 2011, 21, 1319-1328.	6.7	81
67	Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements. Journal of Prosthetic Dentistry, 2011, 105, 185-193.	2.8	14
68	Effects of N-vinylcaprolactam containing polyelectrolytes on hardness, fluoride release and water sorption of conventional glass ionomers. Journal of Prosthetic Dentistry, 2011, 105, 323-331.	2.8	12
69	Ultrasonically set novel NVC-containing glass-ionomer cements for applications in restorative dentistry. Journal of Materials Science: Materials in Medicine, 2011, 22, 2029-2034.	3.6	10
70	Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements. Dental Materials, 2010, 26, 1137-1143.	3.5	28
71	Effects of N-vinylpyrrolidone (NVP) containing polyelectrolytes on surface properties of conventional glass-ionomer cements (CIC). Dental Materials, 2009, 25, 1240-1247.	3.5	23
72	Synthesis and characterization of a novel N-vinylcaprolactam-containing acrylic acid terpolymer for applications in glass-ionomer dental cements. Acta Biomaterialia, 2009, 5, 2101-2108.	8.3	53

#	Article	IF	CITATIONS
73	Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical properties. Acta Biomaterialia, 2009, 5, 498-507.	8.3	24
74	Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cements. Journal of Materials Science: Materials in Medicine, 2008, 19, 2705-2711.	3.6	20
75	Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomaterialia, 2008, 4, 432-440.	8.3	241
76	Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dental Materials, 2008, 24, 1381-1390.	3.5	142