
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133828/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Exome first approach to reduce diagnostic costs and time – retrospective analysis of 111 individuals with rare neurodevelopmental disorders. European Journal of Human Genetics, 2022, 30, 117-125.                       | 2.8  | 22        |
| 2  | Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain. European Journal of Human Genetics, 2022, 30, 101-110.                                    | 2.8  | 3         |
| 3  | Hypochondroplasia and temporal lobe epilepsy – A series of 4 cases. Epilepsy and Behavior, 2022, 126, 108479.                                                                                                             | 1.7  | 2         |
| 4  | Bi-allelic variants in <i>CHKA</i> cause a neurodevelopmental disorder with epilepsy and microcephaly.<br>Brain, 2022, 145, 1916-1923.                                                                                    | 7.6  | 3         |
| 5  | De novo variants in ATP2B1 lead to neurodevelopmental delay. American Journal of Human Genetics, 2022, 109, 944-952.                                                                                                      | 6.2  | 11        |
| 6  | De novo variants in the PABP domain of PABPC1 lead to developmental delay. Genetics in Medicine, 2022, , .                                                                                                                | 2.4  | 4         |
| 7  | Identification of a novel leptin receptor (LEPR) variant and proof of functional relevance directing<br>treatment decisions in patients with morbid obesity. Metabolism: Clinical and Experimental, 2021, 116,<br>154438. | 3.4  | 17        |
| 8  | Pontocerebellar hypoplasia due to bi-allelic variants in MINPP1. European Journal of Human Genetics,<br>2021, 29, 411-421.                                                                                                | 2.8  | 13        |
| 9  | Congenital cervical spine malformation due to biâ€allelic <scp>RIPPLY2</scp> variants in spondylocostal dysostosis type 6. Clinical Genetics, 2021, 99, 565-571.                                                          | 2.0  | 4         |
| 10 | Bi-allelic loss of function variants in SLC30A5 as cause of perinatal lethal cardiomyopathy. European<br>Journal of Human Genetics, 2021, 29, 808-815.                                                                    | 2.8  | 9         |
| 11 | EIF3F-related neurodevelopmental disorder: refining the phenotypic and expanding the molecular spectrum. Orphanet Journal of Rare Diseases, 2021, 16, 136.                                                                | 2.7  | 5         |
| 12 | The genetic landscape of intellectual disability and epilepsy in adults and the elderly: a systematic genetic work-up of 150 individuals. Genetics in Medicine, 2021, 23, 1492-1497.                                      | 2.4  | 31        |
| 13 | Clinical, neuroimaging, and molecular spectrum of <i>TECPR2</i> â€associated hereditary sensory and autonomic neuropathy with intellectual disability. Human Mutation, 2021, 42, 762-776.                                 | 2.5  | 18        |
| 14 | In cis TP53 and RAD51C pathogenic variants may predispose to sebaceous gland carcinomas. European<br>Journal of Human Genetics, 2021, 29, 489-494.                                                                        | 2.8  | 0         |
| 15 | Novel EXOSC3 pathogenic variant results in a mild course of neurologic disease with cerebellum involvement. European Journal of Medical Genetics, 2020, 63, 103649.                                                       | 1.3  | 7         |
| 16 | Germline AGO2 mutations impair RNA interference and human neurological development. Nature Communications, 2020, 11, 5797.                                                                                                | 12.8 | 43        |
| 17 | <i>De novo</i> mutations in the X-linked <i>TFE3</i> gene cause intellectual disability with pigmentary mosaicism and storage disorder-like features. Journal of Medical Genetics, 2020, 57, 808-819.                     | 3.2  | 11        |
| 18 | Genetic basis of neurodevelopmental disorders in 103 Jordanian families. Clinical Genetics, 2020, 97,<br>621-627.                                                                                                         | 2.0  | 19        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Biallelic <i>GRM7</i> variants cause epilepsy, microcephaly, and cerebral atrophy. Annals of Clinical and Translational Neurology, 2020, 7, 610-627.                                              | 3.7  | 15        |
| 20 | Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.                                                                       | 7.6  | 46        |
| 21 | Pathogenic WDFY3 variants cause neurodevelopmental disorders and opposing effects on brain size.<br>Brain, 2019, 142, 2617-2630.                                                                  | 7.6  | 31        |
| 22 | Disruptive mutations in TANC2 define a neurodevelopmental syndrome associated with psychiatric disorders. Nature Communications, 2019, 10, 4679.                                                  | 12.8 | 43        |
| 23 | De novo variants in PAK1 lead to intellectual disability with macrocephaly and seizures. Brain, 2019, 142, 3351-3359.                                                                             | 7.6  | 29        |
| 24 | Bi-allelic Variants in METTL5 Cause Autosomal-Recessive Intellectual Disability and Microcephaly.<br>American Journal of Human Genetics, 2019, 105, 869-878.                                      | 6.2  | 58        |
| 25 | Next-generation sequencing of 32 genes associated with hereditary aortopathies and related disorders of connective tissue in a cohort of 199 patients. Genetics in Medicine, 2019, 21, 1832-1841. | 2.4  | 26        |
| 26 | Heterozygous Variants in KMT2E Cause a Spectrum of Neurodevelopmental Disorders and Epilepsy.<br>American Journal of Human Genetics, 2019, 104, 1210-1222.                                        | 6.2  | 56        |
| 27 | Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in<br>Human Neurons. American Journal of Human Genetics, 2019, 104, 815-834.                     | 6.2  | 59        |
| 28 | Value of renal gene panel diagnostics in adults waiting for kidney transplantation due to undetermined end-stage renal disease. Kidney International, 2019, 96, 222-230.                          | 5.2  | 47        |
| 29 | Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. European Journal of Human Genetics, 2019, 27, 1061-1071.                                     | 2.8  | 11        |
| 30 | Defining and expanding the phenotype of QARS-associated developmental epileptic encephalopathy.<br>Neurology: Genetics, 2019, 5, e373.                                                            | 1.9  | 5         |
| 31 | Identification of a Loss-of-Function Mutation in the Context of Glutaminase Deficiency and Neonatal<br>Epileptic Encephalopathy. JAMA Neurology, 2019, 76, 342.                                   | 9.0  | 33        |
| 32 | <i>GRIN2A</i> -related disorders: genotype and functional consequence predict phenotype. Brain, 2019, 142, 80-92.                                                                                 | 7.6  | 143       |
| 33 | De Novo Variants in MAPK8IP3 Cause Intellectual Disability with Variable Brain Anomalies. American<br>Journal of Human Genetics, 2019, 104, 203-212.                                              | 6.2  | 44        |
| 34 | Loss of function of SVBP leads to autosomal recessive intellectual disability, microcephaly, ataxia, and hypotonia. Genetics in Medicine, 2019, 21, 1790-1796.                                    | 2.4  | 23        |
| 35 | A new p.(Ile66Serfs*93) IGF2 variant is associated with pre- and postnatal growth retardation.<br>European Journal of Endocrinology, 2019, 180, K1-K13.                                           | 3.7  | 16        |
| 36 | Clinical and genetic spectrum of AMPD2-related pontocerebellar hypoplasia type 9. European Journal<br>of Human Genetics, 2018, 26, 695-708.                                                       | 2.8  | 22        |

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Smooth velvety hyperextensible skin in a young patient. JDDG - Journal of the German Society of<br>Dermatology, 2018, 16, 504-507.                                                                                 | 0.8  | 0         |
| 38 | FOXG1 syndrome: genotype–phenotype association in 83 patients with FOXG1 variants. Genetics in Medicine, 2018, 20, 98-108.                                                                                         | 2.4  | 77        |
| 39 | Clinical relevance of systematic phenotyping and exome sequencing in patients with short stature.<br>Genetics in Medicine, 2018, 20, 630-638.                                                                      | 2.4  | 101       |
| 40 | Genetics of autosomal recessive intellectual disability. Medizinische Genetik, 2018, 30, 323-327.                                                                                                                  | 0.2  | 28        |
| 41 | Variants in PUS7 Cause Intellectual Disability with Speech Delay, Microcephaly, Short Stature, and Aggressive Behavior. American Journal of Human Genetics, 2018, 103, 1045-1052.                                  | 6.2  | 89        |
| 42 | De novo variants in neurodevelopmental disorders with epilepsy. Nature Genetics, 2018, 50, 1048-1053.                                                                                                              | 21.4 | 230       |
| 43 | Haploinsufficiency of <i>CUX1</i> Causes Nonsyndromic Global Developmental Delay With Possible<br>Catchâ€up Development. Annals of Neurology, 2018, 84, 200-207.                                                   | 5.3  | 23        |
| 44 | Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics, 2018, 50, 1093-1101.                                        | 21.4 | 70        |
| 45 | Integrative bioinformatics analysis characterizing the role of EDC3 in mRNA decay and its association to intellectual disability. BMC Medical Genomics, 2018, 11, 41.                                              | 1.5  | 5         |
| 46 | Diagnostic Yield and Novel Candidate Genes by Exome Sequencing in 152 Consanguineous Families With<br>Neurodevelopmental Disorders. JAMA Psychiatry, 2017, 74, 293.                                                | 11.0 | 186       |
| 47 | Hypomorphic Pathogenic Variants in TAF13 Are Associated with Autosomal-Recessive Intellectual Disability and Microcephaly. American Journal of Human Genetics, 2017, 100, 555-561.                                 | 6.2  | 26        |
| 48 | PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. European Journal of Human Genetics, 2017, 25, 552-559.                             | 2.8  | 42        |
| 49 | <i>GRIN2B</i> encephalopathy: novel findings on phenotype, variant clustering, functional consequences and treatment aspects. Journal of Medical Genetics, 2017, 54, 460-470.                                      | 3.2  | 190       |
| 50 | A comprehensive global genotype–phenotype database for rare diseases. Molecular Genetics &<br>Genomic Medicine, 2017, 5, 66-75.                                                                                    | 1.2  | 57        |
| 51 | Mutations of familial Mediterranean fever in Syrian patients and controls: Evidence for high carrier rate. Gene Reports, 2017, 6, 87-92.                                                                           | 0.8  | 4         |
| 52 | Genetic screening confirms heterozygous mutations in ACAN as a major cause of idiopathic short stature. Scientific Reports, 2017, 7, 12225.                                                                        | 3.3  | 53        |
| 53 | Biallelic <i>COL3A1</i> mutations result in a clinical spectrum of specific structural brain anomalies<br>and connective tissue abnormalities. American Journal of Medical Genetics, Part A, 2017, 173, 2534-2538. | 1.2  | 25        |
| 54 | De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait<br>Abnormalities. American Journal of Human Genetics, 2017, 101, 1013-1020.                                            | 6.2  | 53        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability.<br>Nature Communications, 2017, 8, 15910.                                                                          | 12.8 | 77        |
| 56 | Clinical exome sequencing: results from 2819 samples reflecting 1000 families. European Journal of<br>Human Genetics, 2017, 25, 176-182.                                                                               | 2.8  | 291       |
| 57 | Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause<br>Pontocerebellar Hypoplasia and Progressive Microcephaly. American Journal of Human Genetics, 2016,<br>99, 228-235.             | 6.2  | 44        |
| 58 | A new missense mutation in PLA2G6 gene among a family with infantile neuroaxonal dystrophy INAD.<br>The Gazette of the Egyptian Paediatric Association, 2016, 64, 171-176.                                             | 0.4  | 4         |
| 59 | Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and<br>Rodents. Cell Metabolism, 2016, 24, 234-245.                                                                          | 16.2 | 103       |
| 60 | Mutations in MBOAT7 , Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual<br>Disability Accompanied by Epilepsy and Autistic Features. American Journal of Human Genetics, 2016, 99,<br>912-916. | 6.2  | 69        |
| 61 | SPATA5 mutations cause a distinct autosomal recessive phenotype of intellectual disability, hypotonia and hearing loss. Orphanet Journal of Rare Diseases, 2016, 11, 130.                                              | 2.7  | 19        |
| 62 | Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly. American Journal of Human Genetics, 2016, 99, 1181-1189.                                         | 6.2  | 30        |
| 63 | Broadening the phenotypic spectrum of pathogenic LARP7 variants: two cases with intellectual<br>disability, variable growth retardation and distinct facial features. Journal of Human Genetics, 2016,<br>61, 229-233. | 2.3  | 23        |
| 64 | A recessive form of extreme macrocephaly and mild intellectual disability complements the spectrum of PTEN hamartoma tumour syndrome. European Journal of Human Genetics, 2016, 24, 889-894.                           | 2.8  | 6         |
| 65 | MAN1B1 Mutation Leads to a Recognizable Phenotype: A Case Report and Future Prospects. Molecular<br>Syndromology, 2015, 6, 58-62.                                                                                      | 0.8  | 12        |
| 66 | Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Human Molecular Genetics, 2015, 24, 3172-3180.                               | 2.9  | 40        |
| 67 | Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of<br>the Manganese and Zinc Transporter Gene SLC39A8. American Journal of Human Genetics, 2015, 97,<br>886-893.       | 6.2  | 171       |
| 68 | Inhibition of RAS Activation Due to a Homozygous Ezrin Variant in Patients with Profound<br>Intellectual Disability. Human Mutation, 2015, 36, 270-278.                                                                | 2.5  | 18        |
| 69 | Recurrent null mutation in SPG20 leads to Troyer syndrome. Molecular and Cellular Probes, 2015, 29, 315-318.                                                                                                           | 2.1  | 13        |
| 70 | TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23). ELife, 2015, 4, .                                                                               | 6.0  | 51        |
| 71 | Null Mutation in PGAP1 Impairing Gpi-Anchor Maturation in Patients with Intellectual Disability and Encephalopathy. PLoS Genetics, 2014, 10, e1004320.                                                                 | 3.5  | 72        |
| 72 | A Peroxisomal Disorder of Severe Intellectual Disability, Epilepsy, and Cataracts Due to Fatty Acyl-CoA<br>Reductase 1 Deficiency. American Journal of Human Genetics, 2014, 95, 602-610.                              | 6.2  | 106       |

| #  | Article                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | <i>NDST1</i> missense mutations in autosomal recessive intellectual disability. American Journal of<br>Medical Genetics, Part A, 2014, 164, 2753-2763.                                                                                                                                                        | 1.2 | 34        |
| 74 | Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause<br>Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2013, 92, 575-583.                                                                                                                        | 6.2 | 87        |
| 75 | Mutations in the mitochondrial gene C12ORF65 lead to syndromic autosomal recessive intellectual disability and show genotype phenotype correlation. European Journal of Medical Genetics, 2013, 56, 599-602.                                                                                                  | 1.3 | 24        |
| 76 | Association study of the GRIA1 and CLINT1 (Epsin 4) genes in a German schizophrenia sample. Psychiatric Genetics, 2011, 21, 114.                                                                                                                                                                              | 1.1 | 5         |
| 77 | NEK1 Mutations Cause Short-Rib Polydactyly Syndrome Type Majewski. American Journal of Human<br>Genetics, 2011, 88, 106-114.                                                                                                                                                                                  | 6.2 | 151       |
| 78 | Adaptor Protein Complex 4 Deficiency Causes Severe Autosomal-Recessive Intellectual Disability,<br>Progressive Spastic Paraplegia, Shy Character, and Short Stature. American Journal of Human<br>Genetics, 2011, 88, 788-795.                                                                                | 6.2 | 206       |
| 79 | A systematic association mapping on chromosome 6q in bipolar affective disorder—evidence for the<br><i>melaninâ€concentratingâ€hormoneâ€receptorâ€2</i> gene as a risk factor for bipolar affective disorder.<br>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 878-884. | 1.7 | 5         |
| 80 | Association study of 20 genetic variants at the D-amino acid oxidase gene in schizophrenia. Psychiatric<br>Genetics, 2010, 20, 82-83.                                                                                                                                                                         | 1.1 | 1         |
| 81 | A new susceptibility locus for bipolar affective disorder in PAR1 on Xp22.3/Yp11.3. American Journal of<br>Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 1110-1114.                                                                                                                         | 1.7 | 14        |
| 82 | European collaborative study of earlyâ€onset bipolar disorder: Evidence for genetic heterogeneity on<br>2q14 according to age at onset. American Journal of Medical Genetics Part B: Neuropsychiatric<br>Genetics, 2010, 153B, 1425-1433.                                                                     | 1.7 | 16        |
| 83 | A reappraisal of the association between Dysbindin (DTNBP1) and schizophrenia in a large combined<br>case–control and family-based sample of German ancestry. Schizophrenia Research, 2010, 118, 98-105.                                                                                                      | 2.0 | 17        |
| 84 | The catechol-O-methyl transferase (COMT) gene and its potential association with schizophrenia:<br>Findings from a large German case-control and family-based sample. Schizophrenia Research, 2010, 122,<br>24-30.                                                                                            | 2.0 | 21        |
| 85 | Possible association of different G72/G30 SNPs with mood episodes and persecutory delusions in<br>bipolar I Romanian patients. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010,<br>34, 657-663.                                                                                          | 4.8 | 10        |
| 86 | The DISC locus and schizophrenia: evidence from an association study in a central European sample<br>and from a meta-analysis across different European populations. Human Molecular Genetics, 2009, 18,<br>2719-2727.                                                                                        | 2.9 | 78        |
| 87 | Variation in <i>P2RX7</i> candidate gene (rs2230912) is not associated with bipolar I disorder and unipolar major depression in four European samples. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1017-1021.                                                         | 1.7 | 50        |
| 88 | The Role of Periodontal Ligament Cells in Delayed Tooth Eruption in Patients with Cleidocranial<br>Dysostosis*. Journal of Orofacial Orthopedics, 2009, 70, 495-510.                                                                                                                                          | 1.3 | 27        |
| 89 | Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide<br>suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.                                                                                                                    | 1.9 | 23        |
| 90 | No association between genetic variants at the DGCR2 gene and schizophrenia in a German sample.<br>Psychiatric Genetics, 2009, 19, 104.                                                                                                                                                                       | 1.1 | 5         |

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | No association between the D-aspartate oxidase locus and schizophrenia. Psychiatric Genetics, 2009, 19, 56.                                                                                                                                                            | 1.1 | 1         |
| 92  | Brief Report: No Association Between Premorbid Adjustment in Adult-Onset Schizophrenia and Genetic<br>Variation in Dysbindin. Journal of Autism and Developmental Disorders, 2008, 38, 1977-1981.                                                                      | 2.7 | 1         |
| 93  | <i>G72</i> and Its Association With Major Depression and Neuroticism in Large Population-Based<br>Groups From Germany. American Journal of Psychiatry, 2008, 165, 753-762.                                                                                             | 7.2 | 50        |
| 94  | Association study between genetic variants at the VAMP2 and VAMP3 loci and bipolar affective disorder. Psychiatric Genetics, 2008, 18, 199-203.                                                                                                                        | 1.1 | 10        |
| 95  | Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5'-region are associated with bipolar affective disorder. Human Molecular Genetics, 2007, 17, 87-97.                                                          | 2.9 | 109       |
| 96  | No association between the serine racemase gene (SRR) and bipolar disorder in a German case–control sample. Psychiatric Genetics, 2007, 17, 127.                                                                                                                       | 1.1 | 0         |
| 97  | No evidence for an association between variants at the γ-amino-n-butyric acid type A receptor β2 locus and schizophrenia. Psychiatric Genetics, 2007, 17, 43-45.                                                                                                       | 1.1 | 6         |
| 98  | Possible association between genetic variants at the GRIN1 gene and schizophrenia with lifetime history of depressive symptoms in a German sample. Psychiatric Genetics, 2007, 17, 308-310.                                                                            | 1.1 | 36        |
| 99  | No association between the serine racemase gene (SRR) and schizophrenia in a German case–control sample. Psychiatric Genetics, 2007, 17, 125.                                                                                                                          | 1.1 | 9         |
| 100 | The First Genomewide Interaction and Locus-Heterogeneity Linkage Scan in Bipolar Affective Disorder:<br>Strong Evidence of Epistatic Effects between Loci on Chromosomes 2q and 6q. American Journal of<br>Human Genetics, 2007, 81, 974-986.                          | 6.2 | 49        |
| 101 | No association between genetic variants at the ASCT1 gene and schizophrenia or bipolar disorder in a<br>German sample. Psychiatric Genetics, 2006, 16, 233-234.                                                                                                        | 1.1 | 6         |
| 102 | No association between genetic variants at the GLYT2 gene and bipolar affective disorder and schizophrenia. Psychiatric Genetics, 2006, 16, 91.                                                                                                                        | 1.1 | 5         |
| 103 | Association study of a functional promoter polymorphism in theXBP1 gene and schizophrenia.<br>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 71-75.                                                                               | 1.7 | 13        |
| 104 | Association study between genetic variants at the PIP5K2A gene locus and schizophrenia and bipolar<br>affective disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B,<br>663-665.                                              | 1.7 | 11        |
| 105 | No evidence for an association between variants at the proline dehydrogenase locus and schizophrenia or bipolar affective disorder. Psychiatric Genetics, 2005, 15, 195-198.                                                                                           | 1.1 | 8         |
| 106 | Genes and Schizophrenia: The G72/G30 Gene Locus in Psychiatric Disorders: A Challenge to Diagnostic<br>Boundaries?. Schizophrenia Bulletin, 2005, 32, 599-608.                                                                                                         | 4.3 | 46        |
| 107 | Genotype-Phenotype Studies in Bipolar Disorder Showing Association Between the DAOA/G30 Locus<br>and Persecutory Delusions: A First Step Toward a Molecular Genetic Classification of Psychiatric<br>Phenotypes. American Journal of Psychiatry, 2005, 162, 2101-2108. | 7.2 | 123       |
| 108 | Genetic Variation in the Human Androgen Receptor Gene Is the Major Determinant of Common<br>Early-Onset Androgenetic Alopecia. American Journal of Human Genetics, 2005, 77, 140-148.                                                                                  | 6.2 | 198       |

| #   | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of<br>Susceptibility Loci on Chromosomes 6q and 8q. American Journal of Human Genetics, 2005, 77, 582-595.                                                                                                 | 6.2 | 218       |
| 110 | Genomewide Scan and Fine-Mapping Linkage Studies in Four European Samples with Bipolar Affective<br>Disorder Suggest a New Susceptibility Locus on Chromosome 1p35-p36 and Provides Further Evidence<br>of Loci on Chromosome 4q31 and 6q24. American Journal of Human Genetics, 2005, 77, 1102-1111. | 6.2 | 56        |
| 111 | No Association Between the Putative Functional ZDHHC8 Single Nucleotide Polymorphism rs175174 and Schizophrenia in Large European Samples. Biological Psychiatry, 2005, 58, 78-80.                                                                                                                    | 1.3 | 41        |
| 112 | Evidence for a Relationship Between Genetic Variants at the Brain-Derived Neurotrophic Factor (BDNF)<br>Locus and Major Depression. Biological Psychiatry, 2005, 58, 307-314.                                                                                                                         | 1.3 | 284       |
| 113 | Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry, 2004, 4, 4.                                                                                                                                         | 2.6 | 32        |
| 114 | Family-based association studies of α-adrenergic receptor genes in chromosomal regions with linkage<br>to bipolar affective disorder. , 2004, 126B, 79-81.                                                                                                                                            |     | 5         |
| 115 | No evidence for DUP25 in patients with panic disorder using a quantitative real-time PCR approach.<br>Human Genetics, 2003, 114, 115-117.                                                                                                                                                             | 3.8 | 16        |