
Matthew A Deardorff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature, 2012, 489, 313-317.	27.8	488
2	Mutations in Cohesin Complex Members SMC3 and SMC1A Cause a Mild Variant of Cornelia de Lange Syndrome with Predominant Mental Retardation. American Journal of Human Genetics, 2007, 80, 485-494.	6.2	445
3	Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 2016, 34, 531-538.	17.5	273
4	The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nature Genetics, 2017, 49, 36-45.	21.4	251
5	RAD21 Mutations Cause a Human Cohesinopathy. American Journal of Human Genetics, 2012, 90, 1014-1027.	6.2	238
6	Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nature Reviews Genetics, 2018, 19, 649-666.	16.3	223
7	Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature Genetics, 2012, 44, 445-449.	21.4	207
8	De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. American Journal of Human Genetics, 2017, 101, 768-788.	6.2	136
9	Mutations in SPATA5 Are Associated with Microcephaly, Intellectual Disability, Seizures, and Hearing Loss. American Journal of Human Genetics, 2015, 97, 457-464.	6.2	134
10	CODAS Syndrome Is Associated with Mutations of LONP1, Encoding Mitochondrial AAA+ Lon Protease. American Journal of Human Genetics, 2015, 96, 121-135.	6.2	127
11	Recommendations for the integration of genomics into clinical practice. Genetics in Medicine, 2016, 18, 1075-1084.	2.4	125
12	Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nature Genetics, 2015, 47, 338-344.	21.4	109
13	Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. American Journal of Human Genetics, 2018, 103, 995-1008.	6.2	92
14	Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith–Wiedemann syndrome. Journal of Medical Genetics, 2016, 53, 53-61.	3.2	76
15	Mutations in the ABCC6 Gene as a Cause of Generalized Arterial Calcification of Infancy: Genotypic Overlap with Pseudoxanthoma Elasticum. Journal of Investigative Dermatology, 2014, 134, 658-665.	0.7	70
16	Phenotypes and genotypes in individuals with <i>SMC1A</i> variants. American Journal of Medical Genetics, Part A, 2017, 173, 2108-2125.	1.2	69
17	Automated Clinical Exome Reanalysis Reveals Novel Diagnoses. Journal of Molecular Diagnostics, 2019, 21, 38-48.	2.8	68
18	Characterization of the Beckwithâ€Wiedemann spectrum: Diagnosis and management. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2019, 181, 693-708.	1.6	62

#	Article	IF	CITATIONS
19	Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes. Human Genetics, 2017, 136, 307-320.	3.8	61
20	De Novo Truncating Mutations in AHDC1 in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apnea. American Journal of Human Genetics, 2014, 94, 784-789.	6.2	57
21	Intragenic <i>KANSL1</i> mutations and chromosome 17q21.31 deletions: broadening the clinical spectrum and genotype–phenotype correlations in a large cohort of patients. Journal of Medical Genetics, 2015, 52, 804-814.	3.2	47
22	TRPV6 Variants Interfere with Maternal-Fetal Calcium Transport through the Placenta and Cause Transient Neonatal Hyperparathyroidism. American Journal of Human Genetics, 2018, 102, 1104-1114.	6.2	47
23	WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features. American Journal of Human Genetics, 2017, 101, 139-148.	6.2	45
24	Cohesin complex-associated holoprosencephaly. Brain, 2019, 142, 2631-2643.	7.6	43
25	Biochemical and Structural Characterization of HDAC8 Mutants Associated with Cornelia de Lange Syndrome Spectrum Disorders. Biochemistry, 2015, 54, 6501-6513.	2.5	41
26	Mutations inSPECC1L, encoding sperm antigen with calponin homology and coiled-coil domains 1-like, are found in some cases of autosomal dominant Opitz G/BBB syndrome. Journal of Medical Genetics, 2015, 52, 104-110.	3.2	40
27	Precision therapy for a new disorder of AMPA receptor recycling due to mutations in <i>ATAD1</i> . Neurology: Genetics, 2017, 3, e130.	1.9	40
28	Cornelia de Lange syndrome in diverse populations. American Journal of Medical Genetics, Part A, 2019, 179, 150-158.	1.2	40
29	Clinical utility gene card for: Cornelia de Lange syndrome. European Journal of Human Genetics, 2015, 23, 1431-1431.	2.8	37
30	P4HA1 mutations cause a unique congenital disorder of connective tissue involving tendon, bone, muscle and the eye. Human Molecular Genetics, 2017, 26, 2207-2217.	2.9	37
31	Nomenclature and definition in asymmetric regional body overgrowth. American Journal of Medical Genetics, Part A, 2017, 173, 1735-1738.	1.2	36
32	A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay. American Journal of Human Genetics, 2017, 100, 343-351.	6.2	35
33	<i>KCNK9</i> imprinting syndrome—further delineation of a possible treatable disorder. American Journal of Medical Genetics, Part A, 2016, 170, 2632-2637.	1.2	32
34	Structural aspects of HDAC8 mechanism and dysfunction in Cornelia de Lange syndrome spectrum disorders. Protein Science, 2016, 25, 1965-1976.	7.6	30
35	Tumor screening in Beckwith–Wiedemann syndrome—To screen or not to screen?. American Journal of Medical Genetics, Part A, 2016, 170, 2261-2264.	1.2	28
36	Molecular diagnosis of somatic overgrowth conditions: A singleâ€center experience. Molecular Genetics & Genomic Medicine, 2019, 7, e536.	1.2	28

MATTHEW A DEARDORFF

#	Article	IF	CITATIONS
37	MESP1 Mutations in Patients with Congenital Heart Defects. Human Mutation, 2016, 37, 308-314.	2.5	26
38	Utility of genetic evaluation in infants with congenital heart defects admitted to the cardiac intensive care unit. American Journal of Medical Genetics, Part A, 2016, 170, 3090-3097.	1.2	26
39	ECHS1 Deficiency as a Cause of Severe Neonatal Lactic Acidosis. JIMD Reports, 2016, 30, 33-37.	1.5	26
40	Complex management of a patient with a contiguous Xp11.4 gene deletion involving ornithine transcarbamylase: A role for detailed molecular analysis in complex presentations of classical diseases. Molecular Genetics and Metabolism, 2008, 94, 498-502.	1.1	25
41	New insights into DNA methylation signatures: SMARCA2 variants in Nicolaides-Baraitser syndrome. BMC Medical Genomics, 2019, 12, 105.	1.5	25
42	<i>De novo</i> missense variants in <i>MEIS2</i> recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features. American Journal of Medical Genetics, Part A, 2018, 176, 1845-1851.	1.2	21
43	<i>ANKRD11</i> variants: <scp>KBG</scp> syndrome and beyond. Clinical Genetics, 2021, 100, 187-200.	2.0	21
44	A human case of <i>SLC35A3</i> â€related skeletal dysplasia. American Journal of Medical Genetics, Part A, 2017, 173, 2758-2762.	1.2	20
45	Ganglioglioma in a Sotos syndrome patient with anNSD1 deletion. American Journal of Medical Genetics Part A, 2004, 130A, 393-394.	2.4	18
46	Beckwith–Wiedemann syndrome in diverse populations. American Journal of Medical Genetics, Part A, 2019, 179, 525-533.	1.2	18
47	Bohringâ€Opitz syndrome caused by an <i>ASXL1</i> mutation inherited from a germline mosaic mother. American Journal of Medical Genetics, Part A, 2018, 176, 1249-1252.	1.2	17
48	Diagnosis and management of the phenotypic spectrum of twins with Beckwithâ€Wiedemann syndrome. American Journal of Medical Genetics, Part A, 2019, 179, 1139-1147.	1.2	17
49	Rapid and accurate interpretation of clinical exomes using Phenoxome: a computational phenotype-driven approach. European Journal of Human Genetics, 2019, 27, 612-620.	2.8	17
50	Improved molecular detection of mosaicism in Beckwith-Wiedemann Syndrome. Journal of Medical Genetics, 2021, 58, 178-184.	3.2	17
51	Pathogenic variants in <i>SMARCA5</i> , a chromatin remodeler, cause a range of syndromic neurodevelopmental features. Science Advances, 2021, 7, .	10.3	17
52	Hyperinsulinemic hypoglycemia in seven patients with de novo <i>NSD1</i> mutations. American Journal of Medical Genetics, Part A, 2019, 179, 542-551.	1.2	16
53	EP300 â€related Rubinstein–Taybi syndrome: Highlighted rare phenotypic findings and a genotype–phenotype metaâ€analysis of 74 patients. American Journal of Medical Genetics, Part A, 2020, 182, 2926-2938.	1.2	16
54	Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome. Genetics in Medicine, 2021, 23, 2122-2137.	2.4	16

MATTHEW A DEARDORFF

4

#	Article	IF	CITATIONS
55	The utility of alphaâ€fetoprotein screening in Beckwith–Wiedemann syndrome. American Journal of Medical Genetics, Part A, 2017, 173, 581-584.	1.2	14
56	Phenotypic predictors and final diagnoses in patients referred for RASopathy testing by targeted next-generation sequencing. Genetics in Medicine, 2017, 19, 715-718.	2.4	14
57	The variability of <scp><i>SMARCA4</i></scp> â€related <scp>Coffin–Siris</scp> syndrome: Do nonsense candidate variants add to milder phenotypes?. American Journal of Medical Genetics, Part A, 2020, 182, 2058-2067.	1.2	14
58	Exome sequencing reveals a nonsense mutation in MMP13 as a new cause of autosomal recessive metaphyseal anadysplasia. European Journal of Human Genetics, 2015, 23, 264-266.	2.8	13
59	A novel pathogenic missense ADAMTS17 variant that impairs secretion causes Weill-Marchesani Syndrome with variably dysmorphic hand features. Scientific Reports, 2020, 10, 10827.	3.3	13
60	<scp>EGFR</scp> mutations cause a lethal syndrome of epithelial dysfunction with progeroid features. Molecular Genetics & amp; Genomic Medicine, 2015, 3, 452-458.	1.2	12
61	Fetal akinesia deformation sequence due to a congenital disorder of glycosylation. American Journal of Medical Genetics, Part A, 2015, 167, 2411-2417.	1.2	12
62	Growth hormone deficiency in megalencephalyâ€capillary malformation syndrome: An association with activating mutations in PIK3CA. American Journal of Medical Genetics, Part A, 2020, 182, 162-168.	1.2	11
63	Correspondence to Gripp et al. nephroblastomatosis or Wilms tumor in a fourth patient with a somatic <i>PIK3CA</i> mutation. American Journal of Medical Genetics, Part A, 2017, 173, 2293-2295.	1.2	10
64	Variants in <scp><i>NAA15</i></scp> cause pediatric hypertrophic cardiomyopathy. American Journal of Medical Genetics, Part A, 2021, 185, 228-233.	1.2	10
65	Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments. Human Genomics, 2015, 9, 31.	2.9	9
66	Hematopoietic Stem Cell Transplant for the Treatment of X-MAID. Frontiers in Pediatrics, 2019, 7, 170.	1.9	9
67	The chromatin remodeler ISWI acts during <i>Drosophila</i> development to regulate adult sleep. Science Advances, 2021, 7, .	10.3	9
68	Evolution of histomorphologic, cytogenetic, and genetic abnormalities in an untreated patient with MIRAGE syndrome. Cancer Genetics, 2020, 245, 42-48.	0.4	7
69	Molecular Diagnostic Outcomes from 700 Cases. Journal of Molecular Diagnostics, 2022, 24, 274-286.	2.8	7
70	Utility and limitations of exome sequencing as a genetic diagnostic tool for conditions associated with pediatric sudden cardiac arrest/sudden cardiac death. Human Genomics, 2015, 9, 15.	2.9	5
71	Argininosuccinic Acid Lyase Deficiency Missed by Newborn Screen. JIMD Reports, 2016, 34, 43-47.	1.5	4

72 Cover Image, Volume 179A, Number 4, April 2019. , 2019, 179, i-i.

MATTHEW A DEARDORFF

#	Article	IF	CITATIONS
73	Segmental congenital hemangiomas: Three cases of a rare entity. Pediatric Dermatology, 2020, 37, 548-553.	0.9	4
74	<i>NKX2â€6</i> related congenital heart disease: Biallelic homeodomainâ€disrupting variants and truncus arteriosus. American Journal of Medical Genetics, Part A, 2020, 182, 1454-1459.	1.2	3
75	Nonlethal presentations of CYP26B1 â€related skeletal anomalies and multiple synostoses syndrome. American Journal of Medical Genetics, Part A, 2021, 185, 2766-2775.	1.2	3
76	Whose Data, Whose Risk? Omics Privacy Concerns Should be Defined by Individuals, not Researchers. American Journal of Bioethics, 2021, 21, 67-70.	0.9	2
77	Another tool in the genome-wide association study arsenal: population-based detection of somatic gene conversion. BMC Medicine, 2011, 9, 13.	5.5	1
78	MG-102â€Coffin-siris syndrome caused by a missense mutation in arid1a. Journal of Medical Genetics, 2015, 52, A1.3-A2.	3.2	1
79	Response to: Toriello et al., "Update on the Toriello–Carey Syndrome.―Further delineation of a young woman with deletion 1q42.12â€q42.2. American Journal of Medical Genetics, Part A, 2017, 173, 1988-1991.	1.2	1
80	A PIK3CA mutation in an acquired capillary malformation. Pediatric Dermatology, 2020, 37, 246-247.	0.9	1
81	Cornelia de Lange syndrome and the Cohesin complex: Abstracts from the 9th Biennial Scientific and Educational Virtual Symposium 2020. American Journal of Medical Genetics, Part A, 2022, 188, 1005-1014.	1.2	1
82	Cornelia de Lange Syndrome: A Variable Disorder of Cohesin Pathology. Current Genetic Medicine Reports, 2015, 3, 74-81.	1.9	0
83	Cover Image, Volume 173A, Number 7, July 2017. American Journal of Medical Genetics, Part A, 2017, 173, i.	1.2	0