Heng Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133448/publications.pdf

Version: 2024-02-01

94433 123424 6,495 65 37 61 h-index citations g-index papers 67 67 67 8514 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The <scp>CRISPR</scp> / <scp>C</scp> as9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12, 797-807.	8.3	726
2	Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nature Materials, 2017, 16, 1155-1161.	27.5	641
3	Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany, 2015, 66, 681-694.	4.8	425
4	DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7414-7419.	7.1	387
5	Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation(China), 2020, 1, 100017.	9.1	387
6	Thriving under Stress: How Plants Balance Growth and the Stress Response. Developmental Cell, 2020, 55, 529-543.	7.0	283
7	A Histone Acetyltransferase Regulates Active DNA Demethylation in <i>Arabidopsis</i> . Science, 2012, 336, 1445-1448.	12.6	224
8	A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1388-1393.	7.1	203
9	Global increase in DNA methylation during orange fruit development and ripening. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1430-1436.	7.1	190
10	Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants, 2018, 4, 989-996.	9.3	186
11	A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research, 2017, 27, 1327-1340.	12.0	170
12	DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8290-8295.	7.1	158
13	TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019, 568, 240-243.	27.8	156
14	The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications. Nature Plants, 2016, 2, 16169.	9.3	147
15	The CHD3 Remodeler PICKLE Associates with Genes Enriched for Trimethylation of Histone H3 Lysine 27 Â Â. Plant Physiology, 2012, 159, 418-432.	4.8	144
16	The CHD3 Remodeler PICKLE Promotes Trimethylation of Histone H3 Lysine 27. Journal of Biological Chemistry, 2008, 283, 22637-22648.	3.4	131
17	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	12.8	130
18	<i>Arabidopsis</i> EDM2 promotes <i>IBM1</i> distal polyadenylation and regulates genome DNA methylation patterns. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 527-532.	7.1	102

#	Article	IF	CITATIONS
19	Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Current Biology, 2018, 28, 3075-3085.e7.	3.9	98
20	The Chromatin Remodelers PKL and PIE1 Act in an Epigenetic Pathway That Determines H3K27me3 Homeostasis in Arabidopsis. Plant Cell, 2018, 30, 1337-1352.	6.6	97
21	Dicer-independent RNA-directed DNA methylation in Arabidopsis. Cell Research, 2016, 26, 66-82.	12.0	95
22	PICKLE acts during germination to repress expression of embryonic traits. Plant Journal, 2005, 44, 1010-1022.	5.7	85
23	A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Research, 2017, 27, 226-240.	12.0	80
24	Methylation interactions in <i>Arabidopsis</i> hybrids require RNA-directed DNA methylation and are influenced by genetic variation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4248-56.	7.1	79
25	A protein complex regulates RNA processing of intronic heterochromatin-containing genes in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7377-E7384.	7.1	74
26	Histone acetylation recruits the SWR1 complex to regulate active DNA demethylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16641-16650.	7.1	73
27	Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nature Communications, 2018, 9, 4547.	12.8	66
28	The <i>Vigna unguiculata</i> Gene Expression Atlas (Vu <scp>GEA</scp>) from <i>de novo</i> assembly and quantification of <scp>RNA</scp> â€seq data provides insights into seed maturation mechanisms. Plant Journal, 2016, 88, 318-327.	5.7	64
29	An Epigenetic Perspective on Developmental Regulation of Seed Genes. Molecular Plant, 2009, 2, 610-627.	8.3	61
30	PICKLE is a CHD subfamily II ATP-dependent chromatin remodeling factor. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 199-210.	1.9	61
31	Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China. Soil Biology and Biochemistry, 2019, 131, 81-89.	8.8	61
32	A Pre-mRNA-Splicing Factor Is Required for RNA-Directed DNA Methylation in Arabidopsis. PLoS Genetics, 2013, 9, e1003779.	3.5	58
33	A Role for PICKLE in the Regulation of Cold and Salt Stress Tolerance in Arabidopsis. Frontiers in Plant Science, 2019, 10, 900.	3.6	58
34	The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discovery, 2016, 2, 16027.	6.7	55
35	Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. Journal of Integrative Plant Biology, 2019, 61, 1224-1242.	8.5	49
36	An Rrp6-like Protein Positively Regulates Noncoding RNA Levels and DNA Methylation in Arabidopsis. Molecular Cell, 2014, 54, 418-430.	9.7	45

#	Article	IF	Citations
37	Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis. Developmental Cell, 2022, 57, 583-597.e6.	7.0	45
38	The developmental regulator PKL is required to maintain correct DNA methylation patterns at RNA-directed DNA methylation loci. Genome Biology, 2017, 18, 103.	8.8	44
39	A large-scale screening of quinoa accessions reveals an important role of epidermal bladder cells and stomatal patterning in salinity tolerance. Environmental and Experimental Botany, 2019, 168, 103885.	4.2	39
40	HDAC1 and HDAC2 Regulate Intermediate Progenitor Positioning to Safeguard Neocortical Development. Neuron, 2019, 101, 1117-1133.e5.	8.1	37
41	Identification of endogenous small peptides involved in rice immunity through transcriptomics―and proteomicsâ€based screening. Plant Biotechnology Journal, 2020, 18, 415-428.	8.3	33
42	RNA-directed DNA methylation in plants. RNA Biology, 2013, 10, 1593-1596.	3.1	31
43	The receptor-like kinases BAM1 and BAM2 are required for root xylem patterning. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	29
44	A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation. Nature Communications, 2021, 12, 3367.	12.8	21
45	Salinity Effects on Guard Cell Proteome in Chenopodium quinoa. International Journal of Molecular Sciences, 2021, 22, 428.	4.1	20
46	Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing. Biology and Fertility of Soils, 2020, 56, 1189-1199.	4.3	17
47	Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in <i>Arabidopsis thaliana </i>	2.9	16
48	Sugar Beet (Beta vulgaris) Guard Cells Responses to Salinity Stress: A Proteomic Analysis. International Journal of Molecular Sciences, 2020, 21, 2331.	4.1	16
49	Involvement of Multiple Gene-Silencing Pathways in a Paramutation-like Phenomenon in Arabidopsis. Cell Reports, 2015, 11, 1160-1167.	6.4	13
50	Structural Basis for Recognition of a Unique Epitope by a Human Anti-tau Antibody. Structure, 2018, 26, 1626-1634.e4.	3.3	9
51	Genome Sequence of Bacillus megaterium Strain YC4-R4, a Plant Growth-Promoting Rhizobacterium Isolated from a High-Salinity Environment. Genome Announcements, 2018, 6, .	0.8	8
52	Developing and validating protocols for mechanical isolation of guard-cell enriched epidermal peels for omics studies. Functional Plant Biology, 2020, 47, 803.	2.1	8
53	Stalk cell polar ion transport provide for bladderâ€based salinity tolerance in <i>Chenopodium quinoa</i> . New Phytologist, 2022, 235, 1822-1835.	7.3	8
54	Complete Genome Sequence of Bacillus megaterium Strain TG1-E1, a Plant Drought Tolerance-Enhancing Bacterium. Microbiology Resource Announcements, 2018, 7, .	0.6	7

#	Article	IF	CITATIONS
55	Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Planta, 2021, 254, 98.	3.2	7
56	Acetylproteomics analyses reveal critical features of lysine- $\hat{l}\mu$ -acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. Stress Biology, 2022, 2, .	3.1	7
57	Recognition of H3K9me1 by maize RNAâ€directed DNA methylation factor SHH2. Journal of Integrative Plant Biology, 2021, 63, 1091-1096.	8.5	6
58	Alleviating the effect of quinoa and the underlying mechanism on hepatic steatosis in high-fat diet-fed rats. Nutrition and Metabolism, 2021, 18, 106.	3.0	6
59	Genome-Wide Analysis of CqCrRLK1L and CqRALF Gene Families in Chenopodium quinoa and Their Roles in Salt Stress Response. Frontiers in Plant Science, 0, 13, .	3.6	5
60	RNAâ€directed DNA methylation has an important developmental function in Arabidopsis that is masked by the chromatin remodeler PICKLE. Journal of Integrative Plant Biology, 2020, 62, 1647-1652.	8.5	4
61	Transcriptome analyses of quinoa leaves revealed critical function of epidermal bladder cells in salt stress acclimation. Plant Stress, 2022, 3, 100061.	5.5	4
62	Genome sequencing and analysis of Ralstonia solanacearum phylotype I strains FJAT-91, FJAT-452 and FJAT-462 isolated from tomato, eggplant, and chili pepper in China. Standards in Genomic Sciences, 2017, 12, 29.	1.5	1
63	It Takes NSUN2 to Beat the Heat in Rice. Developmental Cell, 2020, 53, 253-254.	7.0	1
64	Protecting genes from RNA silencing by destroying aberrant transcripts. Science China Life Sciences, 2015, 58, 613-615.	4.9	0
65	Mechanisms of Salinity Tolerance in Quinoa., 2021,, 221-242.		0