Joerg Heineke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133402/publications.pdf

Version: 2024-02-01

45 papers 3,599 citations

279798 23 h-index 243625 44 g-index

47 all docs

47 docs citations

times ranked

47

6006 citing authors

#	Article	IF	CITATIONS
1	Skeletal muscle derived Musclin protects the heart during pathological overload. Nature Communications, 2022, 13, 149.	12.8	27
2	Analysis of myocardial cellular gene expression during pressure overload reveals matrix based functional intercellular communication. IScience, 2022, 25, 103965.	4.1	8
3	IDH1/2 mutations in acute myeloid leukemia patients and risk of coronary artery disease and cardiac dysfunctionâ€"a retrospective propensity score analysis. Leukemia, 2021, 35, 1301-1316.	7. 2	30
4	A surgical mouse model of neonatal pressure overload by transverse aortic constriction. Nature Protocols, 2021, 16, 775-790.	12.0	5
5	Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Research in Cardiology, 2021, 116, 26.	5.9	34
6	Flow-dependent regulation of endothelial Tie2 by GATA3 in vivo. Intensive Care Medicine Experimental, 2021, 9, 38.	1.9	4
7	Imbalanced Activation of Wnt- \hat{I}^2 -Catenin-Signaling in Liver Endothelium Alters Normal Sinusoidal Differentiation. Frontiers in Physiology, 2021, 12, 722394.	2.8	4
8	A NFAT decoy approach to inhibit cardiac hypertrophy. Pflugers Archiv European Journal of Physiology, 2021, 473, 1809-1811.	2.8	1
9	See more with C-MORE: Addressing the need of robust cardiomyocyte morphological assessment. Cell Reports Medicine, 2021, 2, 100435.	6.5	O
10	Comprehensive Expression Analysis of Cardiac Fibroblast Growth Factor 23 in Health and Pressure-induced Cardiac Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 791479.	3.7	3
11	TNF-α signaling: TACE inhibition to put out the burning heart. PLoS Biology, 2020, 18, e3001037.	5.6	7
12	A gene therapeutic approach to inhibit calcium and integrin binding protein 1 ameliorates maladaptive remodelling in pressure overload. Cardiovascular Research, 2019, 115, 71-82.	3.8	16
13	Anti-androgenic therapy with finasteride in patients with chronic heart failure - a retrospective propensity score based analysis. Scientific Reports, 2019, 9, 10139.	3.3	7
14	Targeting cardiac hypertrophy through a nuclear coâ€repressor. EMBO Molecular Medicine, 2019, 11, e11297.	6.9	4
15	<scp>TIP</scp> 30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Molecular Medicine, 2019, 11, e10018.	6.9	17
16	Inter- and Intracellular Mechanisms of Cardiac Remodeling, Hypertrophy and Dysfunction. Cardiovascular Medicine, 2019, , 39-56.	0.0	1
17	Hepatic Endothelial Notch Activation Protects against Liver Metastasis by Regulating Endothelial-Tumor Cell Adhesion Independent of Angiocrine Signaling. Cancer Research, 2019, 79, 598-610.	0.9	41
18	Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease. Molecular Metabolism, 2019, 20, 102-114.	6.5	11

#	Article	IF	Citations
19	Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight, 2019, 4, .	5.0	47
20	Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload–associated maladaptation. JCI Insight, 2019, 4, .	5.0	24
21	Localization of transcripts, translation, and degradation for spatiotemporal sarcomere maintenance. Journal of Molecular and Cellular Cardiology, 2018, 116, 16-28.	1.9	50
22	Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrology Dialysis Transplantation, 2018, 33, 1722-1734.	0.7	78
23	Impact of Altered Mineral Metabolism on Pathological Cardiac Remodeling in Elevated Fibroblast Growth Factor 23. Frontiers in Endocrinology, 2018, 9, 333.	3.5	27
24	Anti-androgenic therapy with finasteride improves cardiac function, attenuates remodeling and reverts pathologic gene-expression after myocardial infarction in mice. Journal of Molecular and Cellular Cardiology, 2018, 122, 114-124.	1.9	14
25	The transcription factor <scp>GATA</scp> 4 promotes myocardial regeneration in neonatal mice. EMBO Molecular Medicine, 2017, 9, 265-279.	6.9	79
26	C1q-TNF-Related Protein-9 Promotes Cardiac Hypertrophy and Failure. Circulation Research, 2017, 120, 66-77.	4.5	77
27	Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation. Circulation, 2016, 134, 817-832.	1.6	43
28	Differential inhibition of cardiac and neuronal Na+ channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine. European Journal of Pharmacology, 2016, 783, 1-10.	3.5	13
29	Antiandrogenic Therapy With Finasteride Attenuates Cardiac Hypertrophy and Left Ventricular Dysfunction. Circulation, 2015, 131, 1071-1081.	1.6	62
30	Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. International Journal of Cardiology, 2015, 196, 115-122.	1.7	83
31	Exercise makes the difference: Deconstructing physiological hypertrophy in swine. Journal of Molecular and Cellular Cardiology, 2015, 79, 89-91.	1.9	2
32	MicroRNA-24 Antagonism Prevents Renal Ischemia Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 2717-2729.	6.1	128
33	Screening for Novel Calcium-Binding Proteins that Regulate Cardiac Hypertrophy: CIB1 as an Example. Methods in Molecular Biology, 2013, 963, 279-301.	0.9	10
34	Highly Specific Detection of Myostatin Prodomain by an Immunoradiometric Sandwich Assay in Serum of Healthy Individuals and Patients. PLoS ONE, 2013, 8, e80454.	2.5	24
35	Wag the Dog. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 545-547.	2.4	10
36	Cardiomyocyte calcineurin signaling in subcellular domains: From the sarcolemma to the nucleus and beyond. Journal of Molecular and Cellular Cardiology, 2012, 52, 62-73.	1.9	52

#	Article	IF	CITATIONS
37	Finding good biomarkers for sarcopenia. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 145-148.	7.3	47
38	GATA6 Promotes Angiogenic Function and Survival in Endothelial Cells by Suppression of Autocrine Transforming Growth Factor \hat{l}^2 /Activin Receptor-like Kinase 5 Signaling. Journal of Biological Chemistry, 2011, 286, 5680-5690.	3.4	39
39	Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1973-H1982.	3.2	97
40	CIB1 is a regulator of pathological cardiac hypertrophy. Nature Medicine, 2010, 16, 872-879.	30.7	91
41	Genetic Deletion of Myostatin From the Heart Prevents Skeletal Muscle Atrophy in Heart Failure. Circulation, 2010, 121, 419-425.	1.6	207
42	Calcineurin protects the heart in a murine model of dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2010, 48, 1080-1087.	1.9	38
43	Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. Journal of Clinical Investigation, 2007, 117, 3198-3210.	8.2	212
44	Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 2006, 7, 589-600.	37.0	1,680
45	Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1655-1660.	7.1	143