Graham Dawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3133004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ Preparation of Mn _{0.2} Cd _{0.8} Sâ€Diethylenetriamine/Porous gâ€C ₃ N ₄ Sâ€Scheme Heterojunction with Enhanced Photocatalytic Hydrogen Production. Advanced Sustainable Systems, 2023, 7, .	5.3	32
2	Heterostructure nanocomposite with local surface plasmon resonance effect enhanced photocatalytic activity—a critical review. Journal Physics D: Applied Physics, 2022, 55, 043002.	2.8	13
3	Enhanced photocatalytic activity of brown H ₄ Nb ₆ O ₁₇ /g-C ₃ N ₄ composite for visible-light driven H ₂ O ₂ production. Energy Advances, 2022, 1, 169-176.	3.3	4
4	Uniform arrays of centre-type topological domains in epitaxial ferroelectric thin films. Journal of Materials Chemistry C, 2022, 10, 3071-3080.	5.5	11
5	In-situ fabrication of Bi2S3/BiVO4/Mn0.5Cd0.5S-DETA ternary S-scheme heterostructure with effective interface charge separation and CO2 reduction performance. Journal of Materials Science and Technology, 2022, 117, 109-119.	10.7	83
6	Efficient solar-driven CO2 reduction on aminated 2D/2D BiOBr/CdS-diethylenetriamine S-scheme heterojunction. Ceramics International, 2022, 48, 8423-8432.	4.8	25
7	Microwave-assisted synthesis of organic–inorganic hybrid porous g-C ₃ N ₄ /CdS–diethylenetriamine S-scheme heterojunctions with enhanced visible light hydrogen production. Journal Physics D: Applied Physics, 2022, 55, 244001.	2.8	5
8	Branch-like Cd Zn1-Se/Cu2O@Cu step-scheme heterojunction for CO2 photoreduction. Materials Today Physics, 2022, 26, 100729.	6.0	31
9	Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chinese Journal of Catalysis, 2022, 43, 2111-2140.	14.0	49
10	Construction of 1D/2D W ₁₈ O ₄₉ /Porous g-C ₃ N ₄ S-Scheme Heterojunction with Enhanced Photocatalytic H ₂ Evolution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2021, .	4.9	33
11	Excellent surface enhanced Raman properties of titanate nanotube-dopamine-Ag triad through efficient substrate design and LSPR matching. Journal of Materials Science: Materials in Electronics, 2021, 32, 21603-21610.	2.2	3
12	Characterisation and control of cementitious mixes with colour pigment admixtures. Case Studies in Construction Materials, 2021, 15, e00571.	1.7	2
13	Plasmonic enhanced Cu2O-Au-BFO photocathodes for solar hydrogen production. Scientific Reports, 2019, 9, 5140.	3.3	16
14	SERS of Trititanate Nanotubes: Selective Enhancement of Catechol Compounds. ChemistrySelect, 2018, 3, 8338-8343.	1.5	3
15	The photocathodic properties of a Fe2O3 wrapped CuFeO2 layer on ITO glass for water splitting. Chemical Physics, 2018, 513, 241-245.	1.9	7
16	Morphology dependent adsorption of methylene blue on trititanate nanoplates and nanotubes prepared by the hydrothermal treatment of TiO2. Water Science and Technology, 2017, 75, 350-357.	2.5	1
17	MoS2/Au-Sensitized TiO2 Nanotube Arrays with Core–Shell Nanostructure for Hydrogen Production. Nano, 2017, 12, 1750115.	1.0	1
18	Dopamine Surface Modification of Trititanate Nanotubes: Proposed Inâ€Situ Structure Models. Chemistry - A Furopean Journal, 2016, 22, 6071-6074	3.3	14

GRAHAM DAWSON

#	Article	IF	CITATIONS
19	Development of UV-LED/TiO2 Device and Their Application for Photocatalytic Degradation of Methylene Blue. Journal of Materials Engineering and Performance, 2013, 22, 1035-1040.	2.5	45
20	Mass Production and Reusable Photocatalytic Activity of ZnS Microspheres. Nanoscience and Nanotechnology Letters, 2013, 5, 204-208.	0.4	0
21	The toxicity evaluation of nano-trititanate with bactericidal properties in vitro. Nanotoxicology, 2012, 6, 327-337.	3.0	10
22	Dopamineâ€Modified Trititanate Nanotubes with UV―and Visibleâ€Light Photocatalytic Activity: Coordinative Selfâ€Assembly into a Recyclable Absorber. ChemCatChem, 2012, 4, 1133-1138.	3.7	11
23	The shape-specific photocatalytic efficiency of quantum size TiO2 nanoparticles. Catalysis Communications, 2012, 21, 1-4.	3.3	12
24	Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chemical Engineering Journal, 2012, 191, 571-578.	12.7	127
25	Easy and Large Scale Synthesis Silver Nanodendrites: Highly Effective Filler for Isotropic Conductive Adhesives. Journal of Materials Engineering and Performance, 2012, 21, 353-357.	2.5	7
26	Accelerated electron beam induced breakdown of commercial WO3 into nanorods in the presence of triethylamine. Physical Chemistry Chemical Physics, 2011, 13, 20923.	2.8	12
27	Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. Journal of Materials Chemistry, 2011, 21, 14398.	6.7	1,410
28	Anatase nanocrystals with {103} and {112} facets by hydrothermal transformation of titanate nanotubes. Micro and Nano Letters, 2011, 6, 675.	1.3	2
29	A study on the effect of starting material phase on the production of trititanate nanotubes. Solid State Sciences, 2010, 12, 2170-2176.	3.2	24
30	Thermal rearrangement of thiocarbonyl-stabilised triphenylphosphonium ylides leading to (Z)-1-diphenylphosphino-2-phenylsulfenylalkenes. Chemical Communications, 2009, , 7381.	4.1	6
31	Kinetic and mechanistic study on the thermal reactivity of stabilized phosphorus ylides, part 3: [(Acetyl)(arylcarbamoyl)methylene]triphenylphosphoranes and [(alkoxycarbonyl)(arylcarbamoyl)methylene]triphenylphosphoranes and their thiocarbamoyl analogues, International Journal of Chemical Kinetics, 2007, 39, 6-16.	1.6	7
32	Synthesis, thermal reactivity and kinetics of substituted [(benzoyl)(phenylcarbamoyl)methylene]triphenylphosphoranes and their thiocarbamoyl analogues. Tetrahedron, 2005, 61, 129-135.	1.9	13
33	Formation Mechanism ofH2Ti3O7Nanotubes. Physical Review Letters, 2003, 91, 256103.	7.8	331