Nathan D Schley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132610/publications.pdf

Version: 2024-02-01

77 4,024 26 63
papers citations h-index g-index

81 81 81 4588
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fluorine-induced diastereodivergence discovered in an equally rare enantioselective <i>syn</i> -aza-Henry reaction. Chemical Science, 2022, 13, 2614-2623.	7.4	9
2	Synthesis of bright water-soluble circularly polarized luminescence emitters as potential sensors. Inorganic Chemistry Frontiers, 2022, 9, 1474-1480.	6.0	10
3	Strong Circularly Polarized Luminescence at 1550 nm from Enantiopure Molecular Erbium Complexes. Journal of the American Chemical Society, 2022, 144, 6148-6153.	13.7	48
4	Circularly Polarized Luminescence from Uranyl Improves Resolution of Electronic Transitions. Journal of the American Chemical Society, 2022, 144, 10718-10722.	13.7	7
5	How important are the intermolecular hydrogen bonding interactions in methanol solvent for interpreting the chiroptical properties?. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 247, 119094.	3.9	15
6	Pioneers and Influencers in Organometallic Chemistry: Professor Robert Crabtree's Storied Career via an Unusual Journey to the Ivy League. Organometallics, 2021, 40, 295-301.	2.3	1
7	Reversible C(sp ³)-Si Oxidative Addition of Unsupported Organosilanes: Effects of Silicon Substituents on Kinetics and Thermodynamics. Journal of the American Chemical Society, 2021, 143, 5534-5539.	13.7	9
8	Mechanochemical Formation, Solution Rearrangements, and Catalytic Behavior of a Polymorphic Ca/K Allyl Complex. Chemistry - A European Journal, 2021, 27, 8195-8202.	3.3	7
9	Substituent Effect on the Circularly Polarized Luminescence of <i>C</i> ₁ â€Symmetric Carbeneâ€Copper(I) Complexes. ChemPhotoChem, 2021, 5, 902-905.	3.0	12
10	Synthesis and Cytotoxic Evaluation of Arimetamycin A and Its Daunorubicin and Doxorubicin Hybrids. ACS Central Science, 2021, 7, 1327-1337.	11.3	9
11	Di(indenyl)beryllium. Angewandte Chemie - International Edition, 2021, 60, 21174-21178.	13.8	13
12	Di(indenyl)beryllium. Angewandte Chemie, 2021, 133, 21344-21348.	2.0	4
13	Light-Promoted Transfer of an Iridium Hydride in Alkyl Ether Cleavage. Organometallics, 2021, 40, 3291-3297.	2.3	3
14	Frontispiece: Di(indenyl)beryllium. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
15	Frontispiz: Di(indenyl)beryllium. Angewandte Chemie, 2021, 133, .	2.0	O
16	Electronic structure analysis and reactivity of the bimetallic bis-titanocene vinylcarboxylate complex, [(Cp2Ti)2(O2C3TMS2)]. Polyhedron, 2021, 207, 115368.	2.2	4
17	Selective demethylation of <i>O</i> -aryl glycosides by iridium-catalyzed hydrosilylation. Chemical Communications, 2021, 57, 5953-5956.	4.1	2
18	Ligand-Driven Advances in Iridium-Catalyzed sp3 C–H Borylation: 2,2′-Dipyridylarylmethane. Synlett, 2021, 32, 845-850.	1.8	7

#	Article	IF	CITATIONS
19	Yellow Circularly Polarized Luminescence from <i>C</i> ₁ â€5ymmetrical Copper(I) Complexes. Angewandte Chemie, 2020, 132, 1244-1247.	2.0	24
20	Yellow Circularly Polarized Luminescence from <i>C</i> ₁ â€Symmetrical Copper(I) Complexes. Angewandte Chemie - International Edition, 2020, 59, 1228-1231.	13.8	66
21	Product inhibition in nucleophilic aromatic substitution through DPPPent-supported π-arene catalysis. Dalton Transactions, 2020, 49, 10114-10119.	3.3	6
22	Study and modular synthesis of unsymmetrical bis(phosphino)pyrrole ligands. Dalton Transactions, 2020, 49, 9957-9960.	3.3	5
23	Systematic evaluation of the electronic effect of aluminum-containing ligands in iridium–aluminum and rhodium–aluminum bimetallic complexes. Dalton Transactions, 2020, 49, 13029-13043.	3.3	0
24	High circularly polarized luminescence brightness from analogues of Shibasaki's lanthanide complexes. Chemical Communications, 2020, 56, 14813-14816.	4.1	36
25	Circularly Polarized Luminescence from Enantiopure <i>C</i> ₂ -Symmetrical Tetrakis(2-pyridylmethyl)-1,2-diaminocyclohexane Lanthanide Complexes. Inorganic Chemistry, 2020, 59, 7657-7665.	4.0	27
26	Selectivity and Mechanism of Iridium-Catalyzed Cyclohexyl Methyl Ether Cleavage. ACS Catalysis, 2020, 10, 6450-6456.	11.2	5
27	CO ₂ Capture by 2â€(Methylamino)pyridine Ligated Aluminum Alkyl Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 2958-2967.	2.0	11
28	Synthesis of Enantiopure Lanthanide Complexes Supported by Hexadentate <i>N</i> , <i>N</i> ,6>N,6>N,8€2-Bis(methylbipyridyl)bipyrrolidine and Their Circularly Polarized Luminescence. Inorganic Chemistry, 2020, 59, 8498-8504.	4.0	16
29	Synthesis and Electronic Characterization of Iridiumâ€Aluminum and Rhodiumâ€Aluminum Heterobimetallic Complexes Bridged by 3â€Oxypyridine and 4â€Oxypyridine. European Journal of Inorganic Chemistry, 2020, 2020, 1192-1198.	2.0	3
30	Iridium-Catalyzed sp ³ C–H Borylation in Hydrocarbon Solvent Enabled by 2,2′-Dipyridylarylmethane Ligands. Journal of the American Chemical Society, 2020, 142, 6488-6492.	13.7	48
31	Algal Toxin Goniodomin A Binds Potassium Ion Selectively to Yield a Conformationally Altered Complex with Potential Biological Consequences. Journal of Natural Products, 2020, 83, 1069-1081.	3.0	9
32	An η 3 â€Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angewandte Chemie, 2020, 132, 9629-9635.	2.0	10
33	An η ³ â€Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex. Angewandte Chemie - International Edition, 2020, 59, 9542-9548.	13.8	18
34	Rhodium and iridium NNO-Scorpionate complexes: synthesis, structure, and reactivity with aluminum alkyls. Inorganica Chimica Acta, 2020, 506, 119529.	2.4	2
35	Group-Transfer Reactions of a Cationic Iridium Alkoxycarbene Generated by Ether Dehydrogenation. Inorganic Chemistry, 2020, 59, 7143-7149.	4.0	5
36	Alkali-metal- and halide-free dinuclear mixed-valent samarium and europium complexes. Dalton Transactions, 2020, 49, 16059-16061.	3.3	9

3

#	Article	IF	CITATIONS
37	Solid State Structures, Solution Behavior, and Luminescence of Simple Tetrakis(2â€pyridylmethyl)ethylenediamine Lanthanide Complexes. European Journal of Inorganic Chemistry, 2019, 2019, 3769-3775.	2.0	4
38	Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex. Beilstein Journal of Organic Chemistry, 2019, 15, 1856-1863.	2.2	5
39	On Transannulation in Azaphosphatranes: Synthesis and Theoretical Analysis. Inorganic Chemistry, 2019, 58, 15983-15992.	4.0	7
40	Hydrogen Activation and Hydrogenolysis Facilitated By Late-Transition-Metal–Aluminum Heterobimetallic Complexes. Inorganic Chemistry, 2019, 58, 12635-12645.	4.0	12
41	Selective alkyl ether cleavage by cationic bis(phosphine)iridium complexes. Organic and Biomolecular Chemistry, 2019, 17, 1744-1748.	2.8	8
42	Synthesis and characterization of rhodium–aluminum heterobimetallic complexes tethered by a 1,3-bis(diphenylphosphino)-2-propanoxy group. Dalton Transactions, 2019, 48, 8782-8790.	3.3	4
43	Monometallic lanthanide salicylhydrazone complexes exhibiting strong near-infrared luminescence. Chemical Communications, 2019, 55, 8446-8449.	4.1	12
44	Catalytic, Enantioselective Synthesis of Cyclic Carbamates from Dialkyl Amines by CO ₂ -Capture: Discovery, Development, and Mechanism. Journal of the American Chemical Society, 2019, 141, 618-625.	13.7	53
45	Synthesis and Characterization of Heterobimetallic Iridium–Aluminum and Rhodium–Aluminum Complexes. Inorganic Chemistry, 2018, 57, 1148-1157.	4.0	17
46	Solvent-Dependent Sensitization of Ytterbium and Neodymium via an Intramolecular Excimer. Inorganic Chemistry, 2018, 57, 15399-15405.	4.0	14
47	Absolute Configurations of Naturally Occurring [5]- and [3]-Ladderanoic Acids: Isolation, Chiroptical Spectroscopy, and Crystallography. Journal of Natural Products, 2018, 81, 2654-2666.	3.0	8
48	Mechanochemically Driven Transformations in Organotin Chemistry: Stereochemical Rearrangement, Redox Behavior, and Dispersion-Stabilized Complexes. Journal of the American Chemical Society, 2018, 140, 15934-15942.	13.7	58
49	Synthesis, Structure, and Reactivity of Palladium Proazaphosphatrane Complexes Invoked in C–N Cross-Coupling. Organometallics, 2018, 37, 3073-3078.	2.3	5
50	Formation of a Delocalized Iridium Benzylidene with Azaquinone Methide Character via Alkoxycarbene Cleavage. Organometallics, 2018, 37, 1825-1828.	2.3	8
51	Reversible alkoxycarbene formation by C–H activation of ethers via discrete, isolable intermediates. Chemical Communications, 2017, 53, 2130-2133.	4.1	11
52	Evidence for Reversible Cyclometalation in Alkane Dehydrogenation and C–O Bond Cleavage at Iridium Bis(phosphine) Complexes. Organometallics, 2017, 36, 4355-4358.	2.3	6
53	Nickel-Catalyzed Negishi Arylations of Propargylic Bromides: AÂMechanistic Investigation. Journal of the American Chemical Society, 2014, 136, 16588-16593.	13.7	362
54	Domain structure for an amorphous iridium-oxide water-oxidation catalyst characterized by X-ray pair distribution function analysis. Physical Chemistry Chemical Physics, 2014, 16, 1814-1819.	2.8	39

#	Article	lF	Citations
55	Hydrogen-Transfer Catalysis with Cp*Ir ^{III} Complexes: The Influence of the Ancillary Ligands. ACS Catalysis, 2014, 4, 99-108.	11.2	81
56	Characterization of an Amorphous Iridium Water-Oxidation Catalyst Electrodeposited from Organometallic Precursors. Inorganic Chemistry, 2013, 52, 1860-1871.	4.0	65
57	Effects of aqueous buffers on electrocatalytic water oxidation with an iridium oxide material electrodeposited in thin layers from an organometallic precursor. Dalton Transactions, 2013, 42, 3617.	3.3	28
58	Characterization of an activated iridium water splitting catalyst using infrared photodissociation of H2 tagged ions. Physical Chemistry Chemical Physics, 2012, 14, 10109.	2.8	21
59	Comparison of Amorphous Iridium Water-Oxidation Electrocatalysts Prepared from Soluble Precursors. Inorganic Chemistry, 2012, 51, 7749-7763.	4.0	71
60	Symmetrical Hydrogen Bonds in Iridium(III) Alkoxides with Relevance to Outer Sphere Hydrogen Transfer. Inorganic Chemistry, 2012, 51, 12313-12323.	4.0	17
61	Mild, Reversible Reaction of Iridium(III) Amido Complexes with Carbon Dioxide. Inorganic Chemistry, 2012, 51, 9683-9693.	4.0	20
62	Electron-Rich CpIr(biphenyl-2,2′-diyl) Complexes with π-Accepting Carbon Donor Ligands. Organometallics, 2012, 31, 7158-7164.	2.3	17
63	Ultrafast photodriven intramolecular electron transfer from an iridium-based water-oxidation catalyst to perylene diimide derivatives. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15651-15656.	7.1	118
64	Axially chiral dimeric Ir and Rh complexes bridged by flexible NHC ligands. Inorganica Chimica Acta, 2012, 380, 399-410.	2.4	17
65	Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors. Chemical Science, 2011, 2, 94-98.	7.4	219
66	An Iridium(IV) Species, [Cp*Ir(NHC)Cl] ⁺ , Related to a Water-Oxidation Catalyst. Organometallics, 2011, 30, 965-973.	2.3	127
67	Oxidative Synthesis of Amides and Pyrroles via Dehydrogenative Alcohol Oxidation by Ruthenium Diphosphine Diamine Complexes. Organometallics, 2011, 30, 4174-4179.	2.3	180
68	Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex. Inorganic Chemistry, 2011, 50, 11938-11946.	4.0	50
69	Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway. Journal of the American Chemical Society, 2011, 133, 7547-7562.	13.7	296
70	Distinguishing Homogeneous from Heterogeneous Catalysis in Electrode-Driven Water Oxidation with Molecular Iridium Complexes. Journal of the American Chemical Society, 2011, 133, 10473-10481.	13.7	293
71	Cp* Iridium Complexes Give Catalytic Alkane Hydroxylation with Retention of Stereochemistry. Journal of the American Chemical Society, 2010, 132, 12550-12551.	13.7	106
72	Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis. Journal of the American Chemical Society, 2010, 132, 16017-16029.	13.7	507

#	Article	IF	CITATIONS
73	An Experimentalâ 'Theoretical Study of the Factors That Affect the Switch between Ruthenium-Catalyzed Dehydrogenative Amide Formation versus Amine Alkylation. Organometallics, 2010, 29, 6548-6558.	2.3	103
74	Acyl Protection Strategy for Synthesis of a Protic NHC Complex via N-Acyl Methanolysis. Organometallics, 2010, 29, 5728-5731.	2.3	50
75	Iridium and Ruthenium Complexes with Chelating N-Heterocyclic Carbenes: Efficient Catalysts for Transfer Hydrogenation, \hat{I}^2 -Alkylation of Alcohols, and N-Alkylation of Amines. Organometallics, 2009, 28, 321-325.	2.3	352
76	Alcohol cross-coupling reactions catalyzed by Ru and Ir terpyridine complexes. Organic and Biomolecular Chemistry, 2008, 6, 4442.	2.8	91
77	Isomeric Forms of Heavier Main Group Hydrides:  Experimental and Theoretical Studies of the [Sn(Ar)H]2 (Ar = Terphenyl) System. Journal of the American Chemical Society, 2007, 129, 16197-16208.	13.7	102