
Andrew M Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3132307/publications.pdf Version: 2024-02-01

ANDREW M SMITH

#	Article	IF	CITATIONS
1	Controlling Self‧orting versus Coâ€assembly in Supramolecular Gels. ChemSystemsChem, 2022, 4, .	2.6	8
2	Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug–Peptide Fiber Interactions. Biomacromolecules, 2022, 23, 2624-2634.	5.4	26
3	Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Frontiers in Medical Technology, 2020, 2, 571626.	2.5	27
4	Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules, 2020, 21, 2285-2297.	5.4	46
5	Tuning of hydrogel stiffness using a two omponent peptide system for mammalian cell culture. Journal of Biomedical Materials Research - Part A, 2019, 107, 535-544.	4.0	32
6	3D cell bioprinting of self-assembling peptide-based hydrogels. Materials Letters, 2017, 190, 103-106.	2.6	97
7	Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology. Biomacromolecules, 2017, 18, 826-834.	5.4	94
8	Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation. Langmuir, 2016, 32, 4917-4923.	3.5	44
9	A self-assembling fluorescent dipeptide conjugate for cell labelling. Colloids and Surfaces B: Biointerfaces, 2016, 137, 104-108.	5.0	15
10	Self-assembly of a dual functional bioactive peptide amphiphile incorporating both matrix metalloprotease substrate and cell adhesion motifs. Soft Matter, 2015, 11, 3115-3124.	2.7	20
11	Nanospheres from the self-assembly of an elastin-inspired triblock peptide. RSC Advances, 2015, 5, 95007-95013.	3.6	6
12	Ion and seed dependent fibril assembly of a spidroin core domain. Journal of Structural Biology, 2015, 191, 130-138.	2.8	20
13	Data for ion and seed dependent fibril assembly of a spidroin core domain. Data in Brief, 2015, 4, 571-576.	1.0	12
14	Interaction of Metal Ions with Proteins as a Source of Inspiration for Biomimetic Materials. RSC Smart Materials, 2015, , 1-31.	0.1	5
15	Fibril Formation by Short Synthetic Peptides. Sub-Cellular Biochemistry, 2012, 65, 29-51.	2.4	6
16	Biocatalytic self-assembly of 2D peptide-based nanostructures. Soft Matter, 2011, 7, 10032.	2.7	60
17	Spider Silk. Progress in Molecular Biology and Translational Science, 2011, 103, 131-185.	1.7	47
18	Recombinant Spider Silks—Biopolymers with Potential for Future Applications. Polymers, 2011, 3, 640-661.	4.5	78

ANDREW M SMITH

#	Article	IF	CITATIONS
19	Decoding the secrets of spider silk. Materials Today, 2011, 14, 80-86.	14.2	279
20	Functional Amyloids Used by Organisms: A Lesson in Controlling Assembly. Macromolecular Chemistry and Physics, 2010, 211, 127-135.	2.2	22
21	Enzymatic Catalyzed Synthesis and Triggered Gelation of Ionic Peptides. Langmuir, 2010, 26, 11297-11303.	3.5	93
22	An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly. Nanoscale, 2010, 2, 960.	5.6	139
23	Raman optical activity of an achiral element in a chiral environment. Journal of Raman Spectroscopy, 2009, 40, 1093-1095.	2.5	16
24	Enzyme-assisted self-assembly under thermodynamic control. Nature Nanotechnology, 2009, 4, 19-24.	31.5	492
25	Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials, 2009, 30, 2523-2530.	11.4	620
26	Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent p <i>K</i> _a Shifts. Langmuir, 2009, 25, 9447-9453.	3.5	390
27	Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37, 660-664.	3.4	57
28	Fmocâ€Diphenylalanine Self Assembles to a Hydrogel via a Novel Architecture Based on π–π Interlocked βâ€Sheets. Advanced Materials, 2008, 20, 37-41.	21.0	855
29	Designing peptide based nanomaterials. Chemical Society Reviews, 2008, 37, 664.	38.1	1,001
30	Three-dimensional cell culture of chondrocytes on modified di-phenylalanine scaffolds. Biochemical Society Transactions, 2007, 35, 535-537.	3.4	98
31	Engineering nanoscale order into a designed protein fiber. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10853-10858.	7.1	234
32	Bioresponsive hydrogels. Materials Today, 2007, 10, 40-48.	14.2	418
33	Direct Observation of Oligomeric Species formed in the Early Stages of Amyloid Fibril Formation using Electrospray Ionisation Mass Spectrometry. Journal of Molecular Biology, 2006, 364, 9-19.	4.2	137
34	Engineering Increased Stability into Self-Assembled Protein Fibers. Advanced Functional Materials, 2006, 16, 1022-1030.	14.9	95
35	Polar Assembly in a Designed Protein Fiber. Angewandte Chemie - International Edition, 2005, 44, 325-328.	13.8	68
36	Dissecting the Fine Details of Assembly of aT = 3 Phage Capsid. Journal of Theoretical Medicine, 2005, 6,	0.5	10

36 119-125.

#	Article	IF	CITATIONS
37	INVESTIGATION OF THE REDOX STATE OF RECOMBINANT HORSERADISH PEROXIDASE PRODUCED IN INCLUSION BODIES AND FACTORS AFFECTING THE EFFICIENCY OF REFOLDING. Biochemical Society Transactions, 1995, 23, 138S-138S.	3.4	3
38	Expression of recombinant horseradish peroxidase C in <i>Escherichia coli</i> . Biochemical Society Transactions, 1989, 17, 1077-1078.	3.4	7