
Tom H Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3131768/publications.pdf Version: 2024-02-01

TOM H JOHNSTON

#	Article	IF	CITATIONS
1	The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson's Disease. Pharmacological Reviews, 2013, 65, 171-222.	16.0	279
2	Reduction of I-DOPA-Induced Dyskinesia by the Selective Metabotropic Clutamate Receptor 5 Antagonist 3-[(2-Methyl-1,3-thiazol-4-yl)ethynyl]pyridine in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 865-873.	2.5	130
3	Increased 5â€HT _{2A} receptors in the temporal cortex of parkinsonian patients with visual hallucinations. Movement Disorders, 2010, 25, 1399-1408.	3.9	128
4	Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease. Molecular Neurodegeneration, 2010, 5, 43.	10.8	106
5	Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 1879-1891.	3.9	97
6	Dopamine D3 receptor stimulation underlies the development of L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Neurobiology of Disease, 2009, 35, 184-192.	4.4	86
7	Progressive Neurodegeneration or Endogenous Compensation in an Animal Model of Parkinson's Disease Produced by Decreasing Doses of Alpha-Synuclein. PLoS ONE, 2011, 6, e17698.	2.5	82
8	PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP ⁺ in mesencephalic neurons and by MPTP in a mouse model of Parkinson's disease. FASEB Journal, 2008, 22, 2488-2497.	0.5	74
9	Characterization of 3,4-Methylenedioxymethamphetamine (MDMA) Enantiomers <i>In Vitro</i> and in the MPTP-Lesioned Primate: <i>R</i> -MDMA Reduces Severity of Dyskinesia, Whereas <i>S</i> -MDMA Extends Duration of ON-Time. Journal of Neuroscience, 2011, 31, 7190-7198.	3.6	71
10	Subcellular redistribution of the synapseâ€associated proteins PSDâ€95 and SAP97 in animal models of Parkinson&s disease and Lâ€ĐOPAâ€induced dyskinesia. FASEB Journal, 2005, 19, 1-25.	0.5	70
11	Neuropsychiatric Behaviors in the MPTP Marmoset Model of Parkinson's Disease. Canadian Journal of Neurological Sciences, 2010, 37, 86-95.	0.5	63
12	A critique of available scales and presentation of the nonâ€human primate dyskinesia rating scale. Movement Disorders, 2012, 27, 1373-1378.	3.9	62
13	The selective muâ€opioid receptor antagonist adl5510 reduces levodopaâ€induced dyskinesia without affecting antiparkinsonian action in mptpâ€lesioned macaque model of Parkinson's disease. Movement Disorders, 2011, 26, 1225-1233.	3.9	58
14	Rotigotine polyoxazoline conjugate SERâ€214 provides robust and sustained antiparkinsonian benefit. Movement Disorders, 2013, 28, 1675-1682.	3.9	54
15	Histamine H3 receptor agonists reduce L-dopa-induced chorea, but not dystonia, in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2006, 21, 839-846.	3.9	52
16	Dopamine Receptor Agonists and Levodopa and Inducing Psychosis-Like Behavior in the MPTP Primate Model of Parkinson Disease. Archives of Neurology, 2006, 63, 1343.	4.5	51
17	Effect of histamine H ₂ receptor antagonism on levodopa–induced dyskinesia in the MPTPâ€macaque model of Parkinson's disease. Movement Disorders, 2010, 25, 1379-1390.	3.9	46
18	Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE, 2016, 11, e0167235.	2.5	42

Том Н Јонизтои

#	Article	IF	CITATIONS
19	UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances l-DOPA anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Neuropharmacology, 2014, 82, 76-87.	4.1	40
20	α ₁ -Adrenoceptors Mediate Dihydroxyphenylalanine-Induced Activity in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Macaques. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 276-283.	2.5	39
21	L-745,870 Reduces l-DOPA-Induced Dyskinesia in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Macaque Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 576-585.	2.5	39
22	The highly-selective 5-HT1A agonist F15599 reduces l-DOPA-induced dyskinesia without compromising anti-parkinsonian benefits in the MPTP-lesioned macaque. Neuropharmacology, 2015, 97, 306-311.	4.1	39
23	Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice. PLoS ONE, 2013, 8, e60141.	2.5	39
24	TC-8831, a nicotinic acetylcholine receptor agonist, reduces l-DOPA-induced dyskinesia in the MPTP macaque. Neuropharmacology, 2013, 73, 337-347.	4.1	38
25	The nociceptin/orphanin FQ (NOP) receptor antagonist Jâ€113397 enhances the effects of levodopa in the MPTPâ€lesioned nonhuman primate model of Parkinson's disease. Movement Disorders, 2008, 23, 1922-1925.	3.9	37
26	l-DOPA pharmacokinetics in the MPTP-lesioned macaque model of Parkinson's disease. Neuropharmacology, 2012, 63, 829-836.	4.1	37
27	Functional interaction between adenosine A2A and group III metabotropic glutamate receptors to reduce parkinsonian symptoms in rats. Neuropharmacology, 2008, 55, 483-490.	4.1	36
28	5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiology of Aging, 2012, 33, 194.e5-194.e15.	3.1	36
29	The α ₂ adrenergic antagonist fipamezole improves quality of levodopa action in Parkinsonian primates. Movement Disorders, 2010, 25, 2084-2093.	3.9	35
30	Fatty Acid Amide Hydrolase (FAAH) Inhibition Reduces l-3,4-Dihydroxyphenylalanine-Induced Hyperactivity in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Lesioned Non-Human Primate Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 423-430.	2.5	35
31	Regulation of cortical and striatal 5-HT1A receptors in the MPTP-lesioned macaque. Neurobiology of Aging, 2012, 33, 207.e9-207.e19.	3.1	34
32	Advances in the delivery of treatments for Parkinson's disease. Expert Opinion on Drug Delivery, 2005, 2, 1059-1073.	5.0	32
33	Pridopidine, a clinicâ€ready compound, reduces 3,4â€dihydroxyphenylalanineâ€induced dyskinesia in Parkinsonian macaques. Movement Disorders, 2019, 34, 708-716.	3.9	32
34	Altered function of glutamatergic cortico-striatal synapses causes output pathway abnormalities in a chronic model of parkinsonism. Neurobiology of Disease, 2011, 41, 591-604.	4.4	31
35	Changes in GABAB RECEPTOR mRNA expression in the rodent basal ganglia and thalamus following lesion of the nigrostriatal pathway. Neuroscience, 2003, 120, 1027-1035.	2.3	27
36	A simple rodent assay for the in vivo identification of agents with potential to reduce levodopa-induced dyskinesia in Parkinson's disease. Experimental Neurology, 2005, 191, 243-250.	4.1	27

Том Н Јонизтои

#	Article	IF	CITATIONS
37	The Monoamine Re-Uptake Inhibitor UWA-101 Improves Motor Fluctuations in the MPTP-Lesioned Common Marmoset. PLoS ONE, 2012, 7, e45587.	2.5	27
38	Repurposing drugs to treat l-DOPA-induced dyskinesia in Parkinson's disease. Neuropharmacology, 2019, 147, 11-27.	4.1	26
39	L-745,870 reduces the expression of abnormal involuntary movements in the 6-OHDA-lesioned rat. Behavioural Pharmacology, 2015, 26, 101-108.	1.7	24
40	Increased levels of 5â€HT _{1A} receptor binding in ventral visual pathways in Parkinson's disease. Movement Disorders, 2012, 27, 735-742.	3.9	23
41	Pharmacokinetic/Pharmacodynamic Correlation Analysis of Amantadine for Levodopa-Induced Dyskinesia. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 373-381.	2.5	23
42	A novel MDMA analogue, UWAâ€101, that lacks psychoactivity and cytotoxicity, enhances l â€DOPA benefit in parkinsonian primates. FASEB Journal, 2012, 26, 2154-2163.	0.5	22
43	Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Current Topics in Behavioral Neurosciences, 2014, 22, 221-235.	1.7	22
44	RGFP109, a histone deacetylase inhibitor attenuates l-DOPA-induced dyskinesia in the MPTP-lesioned marmoset: A proof-of-concept study. Parkinsonism and Related Disorders, 2013, 19, 260-264.	2.2	21
45	Generation of a model of I-DOPA-induced dyskinesia in two different mouse strains. Journal of Neuroscience Methods, 2011, 197, 193-208.	2.5	20
46	Drugs in development for Parkinson's disease. Current Opinion in Investigational Drugs, 2004, 5, 720-6.	2.3	20
47	Reproducibility of a Parkinsonism-related metabolic brain network in non-human primates: A descriptive pilot study with FDG PET. Movement Disorders, 2015, 30, 1283-1288.	3.9	18
48	Beneficial Effects of Trehalose on Striatal Dopaminergic Deficits in Rodent and Primate Models of Synucleinopathy in Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 364-374.	2.5	17
49	DPI-289, a novel mixed delta opioid agonist / mu opioid antagonist (DAMA), has L-DOPA-sparing potential in Parkinson's disease Neuropharmacology, 2018, 131, 116-127.	4.1	16
50	Drugs in development for Parkinson's disease: an update. Current Opinion in Investigational Drugs, 2006, 7, 25-32.	2.3	15
51	Redesigning the designer drug ecstasy: non-psychoactive MDMA analogues exhibiting Burkitt's lymphoma cytotoxicity. MedChemComm, 2010, 1, 287.	3.4	11
52	GABAB receptor agonists reverse akinesia following intranigral or intracerebroventricular injection in the reserpine-treated rat. British Journal of Pharmacology, 2003, 139, 1480-1486.	5.4	10
53	New insights into the organization of the basal ganglia. Current Neurology and Neuroscience Reports, 2009, 9, 298-304.	4.2	10
54	Pioglitazone may impair <scp>Lâ€DOPA</scp> antiâ€parkinsonian efficacy in the <scp>MPTP</scp> â€lesioned macaque: Results of a pilot study. Synapse, 2015, 69, 99-102.	1.2	9

#	Article	IF	CITATIONS
55	Receptorâ€activity modifying protein 1 expression is increased in the striatum following repeated <scp>L</scp> â€DOPA administration in a 6â€hydroxydopamine lesioned rat model of Parkinson's disease. Synapse, 2008, 62, 310-313.	1.2	8
56	Use of catecholâ€ <i>O</i> â€methyltransferase inhibition to minimize Lâ€3,4â€dihydroxyphenylalanineâ€induced dyskinesia in the 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€lesioned macaque. European Journal of Neuroscience, 2013, 37, 831-838.	2.6	5
57	Experimental Models of I-DOPA-Induced Dyskinesia. International Review of Neurobiology, 2011, 98, 55-93.	2.0	4
58	The Opioid System in Levodopa-Induced Dyskinesia. , 2014, , 213-227.		0
59	Primate Models of Complications Related to Parkinson Disease Treatment. , 2015, , 355-371.		0