
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129572/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrophysiological and behavioral indicators of musical knowledge about unfamiliar music.<br>Scientific Reports, 2022, 12, 441.                                   | 3.3 | 0         |
| 2  | Movement markers of schizophrenia: a detailed analysis of patients' gait patterns. European Archives of Psychiatry and Clinical Neuroscience, 2022, 272, 1347-1364. | 3.2 | 10        |
| 3  | Human (but not animal) motion can be recognized at first sight – After treatment for congenital<br>blindness. Neuropsychologia, 2022, 174, 108307.                  | 1.6 | 3         |
| 4  | Does co-presence affect the way we perceive and respond to emotional interactions?. Experimental<br>Brain Research, 2021, 239, 923-936.                             | 1.5 | 2         |
| 5  | bmlSUP – A SMPL Unity Player. , 2021, , .                                                                                                                           |     | 1         |
| 6  | Spatiotemporal dynamics of responses to biological motion in the human brain. Cortex, 2021, 136, 124-139.                                                           | 2.4 | 9         |
| 7  | Does anxiety induced by social interaction influence the perception of bistable biological motion?.<br>Acta Psychologica, 2021, 215, 103277.                        | 1.5 | 3         |
| 8  | MoVi: A large multi-purpose human motion and video dataset. PLoS ONE, 2021, 16, e0253157.                                                                           | 2.5 | 35        |
| 9  | The role of binocular disparity and active motion parallax in cybersickness. Experimental Brain Research, 2021, 239, 2649-2660.                                     | 1.5 | 3         |
| 10 | Integrating situational probability and kinematic information when anticipating disguised movements.<br>Psychology of Sport and Exercise, 2020, 46, 101607.         | 2.1 | 30        |
| 11 | Prediction of action outcome: Effects of available information about body structure. Attention,<br>Perception, and Psychophysics, 2020, 82, 2076-2084.              | 1.3 | 5         |
| 12 | bmlTUX: Design and Control of Experiments in Virtual Reality and Beyond. I-Perception, 2020, 11, 204166952093840.                                                   | 1.4 | 24        |
| 13 | Classifying Elite From Novice Athletes Using Simulated Wearable Sensor Data. Frontiers in<br>Bioengineering and Biotechnology, 2020, 8, 814.                        | 4.1 | 9         |
| 14 | Probabilistic Character Motion Synthesis using a Hierarchical Deep Latent Variable Model. Computer<br>Graphics Forum, 2020, 39, 225-239.                            | 3.0 | 17        |
| 15 | Biological Action Identification Does Not Require Early Visual Input for Development. ENeuro, 2020, 7,<br>ENEURO.0534-19.2020.                                      | 1.9 | 11        |
| 16 | Panel: Bodily Expressed Emotion Understanding Research: A Multidisciplinary Perspective. Lecture<br>Notes in Computer Science, 2020, , 733-746.                     | 1.3 | 0         |
| 17 | Experimental design with Unity Game Engine. Journal of Vision, 2020, 20, 810.                                                                                       | 0.3 | 2         |
| 18 | The Role of Sexual Dimorphism in the Perception of Attractiveness and Confidence. Journal of Vision, 2020, 20, 878.                                                 | 0.3 | 1         |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Stereopsis Aids Perceived Distance Based on An Exocentric Pointing Task. Journal of Vision, 2020, 20, 1171.                                                                                        | 0.3 | 0         |
| 20 | Reality Check. Perception, 2019, 48, 1033-1038.                                                                                                                                                    | 1.2 | 11        |
| 21 | Auto-labelling of Markers in Optical Motion Capture by Permutation Learning. Lecture Notes in Computer Science, 2019, , 167-178.                                                                   | 1.3 | 13        |
| 22 | Perceptual Effects of Inconsistency in Human Animations. ACM Transactions on Applied Perception, 2019, 16, 1-18.                                                                                   | 1.9 | 4         |
| 23 | AMASS: Archive of Motion Capture As Surface Shapes. , 2019, , .                                                                                                                                    |     | 417       |
| 24 | Walk-through Metal Detector Testing and the Need to Emulate Natural Body Motion. Journal of Testing and Evaluation, 2019, 47, 627-639.                                                             | 0.7 | 2         |
| 25 | The size of objects in visual space compared to pictorial space. Journal of Vision, 2019, 19, 16.                                                                                                  | 0.3 | Ο         |
| 26 | How the Brain Learns to See Biological Motion After Recovering from Visual Deprivation. Journal of Vision, 2019, 19, 191a.                                                                         | 0.3 | 0         |
| 27 | Inverting the Facing-the-Viewer Bias for Biological Motion Stimuli. I-Perception, 2018, 9, 204166951775017.                                                                                        | 1.4 | 3         |
| 28 | Objectively Differentiating Movement Patterns between Elite and Novice Athletes. Medicine and Science in Sports and Exercise, 2018, 50, 1457-1464.                                                 | 0.4 | 38        |
| 29 | Heritable aspects of biological motion perception and its covariation with autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1937-1942. | 7.1 | 40        |
| 30 | Cortical and subcortical responses to biological motion. NeuroImage, 2018, 174, 87-96.                                                                                                             | 4.2 | 30        |
| 31 | Motion processing after sight restoration: No competition between visual recovery and auditory compensation. Neurolmage, 2018, 167, 284-296.                                                       | 4.2 | 30        |
| 32 | Cognition modulates action-to-perception transfer in ambiguous perception. Journal of Vision, 2018, 18, 5.                                                                                         | 0.3 | 7         |
| 33 | The role of avatar fidelity and sex on self-motion recognition. , 2018, , .                                                                                                                        |     | 2         |
| 34 | Influence of bone-conducted vibration on simulator sickness in virtual reality. PLoS ONE, 2018, 13, e0194137.                                                                                      | 2.5 | 71        |
| 35 | Cognitive models modulate action-perception coupling in perceptual multistability. Journal of Vision, 2018, 18, 669.                                                                               | 0.3 | 0         |
| 36 | Visual-motor mapping in VR: Detection thresholds for distortions of hand position. Journal of Vision, 2018, 18, 68.                                                                                | 0.3 | 0         |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Pigeons use distinct stop phases to control pecking. Journal of Experimental Biology, 2017, 220, 437-444.                                                               | 1.7 | 18        |
| 38 | Vection Latency Is Reduced by Bone-Conducted Vibration and Noisy Galvanic Vestibular Stimulation.<br>Multisensory Research, 2017, 30, 65-90.                            | 1.1 | 43        |
| 39 | Biological motion distorts size perception. Scientific Reports, 2017, 7, 42576.                                                                                         | 3.3 | 2         |
| 40 | Kinematic patterns underlying disguised movements: Spatial and temporal dissimilarity compared to genuine movement patterns. Human Movement Science, 2017, 54, 308-319. | 1.4 | 7         |
| 41 | Priming biological motion changes extrapersonal space categorization. Acta Psychologica, 2017, 172, 77-83.                                                              | 1.5 | 8         |
| 42 | Effects of animation retargeting on perceived action outcomes. , 2017, , .                                                                                              |     | 0         |
| 43 | Motion database of disguised and non-disguised team handball penalty throws by novice and expert performers. Data in Brief, 2017, 15, 981-986.                          | 1.0 | 3         |
| 44 | Social interactivity in pigeon courtship behavior. Environmental Epigenetics, 2017, 63, 85-95.                                                                          | 1.8 | 7         |
| 45 | Head Stabilization in the Pigeon: Role of Vision to Correct for Translational and Rotational Disturbances. Frontiers in Neuroscience, 2017, 11, 551.                    | 2.8 | 10        |
| 46 | Subcortical and cortical responses to local biological motion as revealed by fMRI and MEG. Journal of Vision, 2017, 17, 64.                                             | 0.3 | 0         |
| 47 | Head-bobbing in the Ring-billed Gull ( <i>Larus delawarensis</i> ). Canadian Field-Naturalist, 2016, 130, 174.                                                          | 0.1 | 0         |
| 48 | Domain-Specific and Unspecific Reaction Times in Experienced Team Handball Goalkeepers and Novices.<br>Frontiers in Psychology, 2016, 7, 882.                           | 2.1 | 21        |
| 49 | Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans.<br>Scientific Reports, 2016, 6, 24683.                            | 3.3 | 33        |
| 50 | Internal consistency predicts attractiveness in biological motion walkers. Evolution and Human<br>Behavior, 2016, 37, 40-46.                                            | 2.2 | 10        |
| 51 | Short and long term representation of an unfamiliar tone distribution. PeerJ, 2016, 4, e2399.                                                                           | 2.0 | 3         |
| 52 | Spatiotemporal dissimilarity influences the perceptual discriminability of deceptive and non-deceptive throwing. Journal of Vision, 2016, 16, 278.                      | 0.3 | 1         |
| 53 | Effects of movement-shape inconsistencies on perceived weight of lifted boxes Journal of Vision, 2016, 16, 276.                                                         | 0.3 | 0         |
| 54 | Biological motion distorts size perception. Journal of Vision, 2016, 16, 282.                                                                                           | 0.3 | 0         |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Vection is facilitated by bone conducted vibration and galvanic vestibular stimulation. Journal of Vision, 2016, 16, 1203.                                                                                       | 0.3 | 0         |
| 56 | Walking direction triggers visuo-spatial orienting in 6-month-old infants and adults: An eye tracking study. Cognition, 2015, 141, 112-120.                                                                      | 2.2 | 21        |
| 57 | The influence of motion quality on responses towards video playback stimuli. Biology Open, 2015, 4,<br>803-811.                                                                                                  | 1.2 | 8         |
| 58 | Functional characterisation of the chromatically antagonistic photosensitive mechanism of<br>erythrophores in the tilapia <i>Oreochromis niloticus</i> . Journal of Experimental Biology, 2015, 218,<br>748-756. | 1.7 | 11        |
| 59 | The relationship between social anxiety and the perception of depth-ambiguous biological motion stimuli is mediated by inhibitory ability. Acta Psychologica, 2015, 157, 93-100.                                 | 1.5 | 16        |
| 60 | Familiarity and preference for pitch probability profiles. Cognitive Processing, 2015, 16, 211-218.                                                                                                              | 1.4 | 8         |
| 61 | Local and global aspects of biological motion perception in children born at very low birth weight.<br>Child Neuropsychology, 2015, 21, 603-628.                                                                 | 1.3 | 10        |
| 62 | The neural development of the biological motion processing system does not rely on early visual input. Cortex, 2015, 71, 359-367.                                                                                | 2.4 | 32        |
| 63 | How we walk affects what we remember: Gait modifications through biofeedback change negative affective memory bias. Journal of Behavior Therapy and Experimental Psychiatry, 2015, 46, 121-125.                  | 1.2 | 84        |
| 64 | What causes the facing-the-viewer bias in biological motion?. Journal of Vision, 2014, 14, 10-10.                                                                                                                | 0.3 | 13        |
| 65 | Assessing threat responses towards the symptoms and diagnosis of schizophrenia using visual perceptual biases. Schizophrenia Research, 2014, 159, 238-242.                                                       | 2.0 | 8         |
| 66 | Both Physical Exercise and Progressive Muscle Relaxation Reduce the Facing-the-Viewer Bias in Biological Motion Perception. PLoS ONE, 2014, 9, e99902.                                                           | 2.5 | 24        |
| 67 | Physical Exercise Reduces the Facing-the-Viewer Bias for Biological Motion Stimuli. Journal of Vision, 2014, 14, 1015-1015.                                                                                      | 0.3 | 0         |
| 68 | Stick figures and point-light displays: Effects of inversion on the facing-the-viewer bias. Journal of Vision, 2014, 14, 1024-1024.                                                                              | 0.3 | 0         |
| 69 | What do you mean with "direction� Local and global cues to biological motion perception in pigeons.<br>Vision Research, 2013, 79, 47-55.                                                                         | 1.4 | 51        |
| 70 | High complexity of aquatic irradiance may have driven the evolution of four-dimensional colour vision in shallow-water fish. Journal of Experimental Biology, 2013, 216, 1670-82.                                | 1.7 | 11        |
| 71 | What Is Biological Motion? Definition, Stimuli, and Paradigms. , 2013, , 13-36.                                                                                                                                  |     | 48        |
| 72 | Can we perceive linear perspective in biological motion point-light displays?. Journal of Vision, 2013, 13, 188-188.                                                                                             | 0.3 | 0         |

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Does a convexity prior explain the facing-the-viewer bias in the perception of biological motion?.<br>Journal of Vision, 2013, 13, 187-187.                                                                                                                          | 0.3 | 0         |
| 74 | Healthy Older Observers Cannot Use Biological-Motion Point-Light Information Efficiently within 4 m of Themselves. I-Perception, 2012, 3, 104-111.                                                                                                                   | 1.4 | 18        |
| 75 | IQ Predicts Biological Motion Perception in Autism Spectrum Disorders. Journal of Autism and<br>Developmental Disorders, 2012, 42, 557-565.                                                                                                                          | 2.7 | 69        |
| 76 | Human attributes from 3D pose tracking. Computer Vision and Image Understanding, 2012, 116, 648-660.                                                                                                                                                                 | 4.7 | 21        |
| 77 | Perceived naturalness of human motion depends on internal consistency. Journal of Vision, 2012, 12, 466-466.                                                                                                                                                         | 0.3 | 2         |
| 78 | Exploring Individual Differences in Perceptual Biases in Depth-Ambiguous Point-Light Walkers. Journal of Vision, 2012, 12, 465-465.                                                                                                                                  | 0.3 | 1         |
| 79 | Allocation of attention to biological motion: Local motion dominates global shape. Journal of Vision, 2011, 11, 4-4.                                                                                                                                                 | 0.3 | 27        |
| 80 | The Effect of Looming and Receding Sounds on the Perceived In-Depth Orientation of Depth-Ambiguous<br>Biological Motion Figures. PLoS ONE, 2011, 6, e14725.                                                                                                          | 2.5 | 20        |
| 81 | Comparing Biological Motion Perception in Two Distinct Human Societies. PLoS ONE, 2011, 6, e28391.                                                                                                                                                                   | 2.5 | 19        |
| 82 | The facing bias in biological motion perception: structure, kinematics, and body parts. Attention,<br>Perception, and Psychophysics, 2011, 73, 130-143.                                                                                                              | 1.3 | 38        |
| 83 | Body Configuration Modulates the Usage of Local Cues to Direction in Biological-Motion Perception.<br>Psychological Science, 2011, 22, 1543-1549.                                                                                                                    | 3.3 | 38        |
| 84 | Differences in the Nature of Body Image Disturbances Between Female Obese Individuals With Versus<br>Without a Comorbid Binge Eating Disorder: An Exploratory Study Including Static and Dynamic<br>Aspects of Body Image. Behavior Modification, 2011, 35, 162-186. | 1.6 | 41        |
| 85 | A test battery for assessing biological motion perception. Journal of Vision, 2011, 11, 686-686.                                                                                                                                                                     | 0.3 | 3         |
| 86 | Bootstrapping a prior? Effects of experience on the facing bias in biological motion perception.<br>Journal of Vision, 2011, 11, 692-692.                                                                                                                            | 0.3 | 1         |
| 87 | The Viewing-from-Above Bias and the Silhouette Illusion. I-Perception, 2010, 1, 143-148.                                                                                                                                                                             | 1.4 | 34        |
| 88 | The facing bias in biological motion perception: Effects of stimulus gender and observer sex.<br>Attention, Perception, and Psychophysics, 2010, 72, 1256-1260.                                                                                                      | 1.3 | 56        |
| 89 | Do rats (Rattus norvegicus) perceive biological motion?. Experimental Brain Research, 2010, 205, 571-576.                                                                                                                                                            | 1.5 | 28        |
| 90 | Inter-joint coupling and joint angle synergies of human catching movements. Human Movement<br>Science, 2010, 29, 73-93.                                                                                                                                              | 1.4 | 69        |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Peripheral sensitivity to biological motion conveyed by first and second-order signals. Vision<br>Research, 2010, 50, 127-135.                                                   | 1.4 | 7         |
| 92  | Young Infants Detect the Direction of Biological Motion in Point‣ight Displays. Infancy, 2010, 15, 83-93.                                                                        | 1.6 | 43        |
| 93  | Limits of peripheral direction discrimination of point-light walkers. Journal of Vision, 2010, 10, 1-17.                                                                         | 0.3 | 18        |
| 94  | Frames of reference for biological motion and face perception. Journal of Vision, 2010, 10, 22-22.                                                                               | 0.3 | 18        |
| 95  | Gaze patterns during perception of direction and gender from biological motion. Journal of Vision, 2010, 10, 9-9.                                                                | 0.3 | 25        |
| 96  | Exploring motor system contributions to the perception of social information: Evidence from EEG activity in the mu/alpha frequency range. Social Neuroscience, 2010, 5, 272-284. | 1.3 | 124       |
| 97  | Embodied effects of mindfulness-based cognitive therapy. Journal of Psychosomatic Research, 2010, 68, 312-313.                                                                   | 2.6 | 18        |
| 98  | Human Attributes from 3D Pose Tracking. Lecture Notes in Computer Science, 2010, , 243-257.                                                                                      | 1.3 | 19        |
| 99  | Decomposing biological motion: A linear model for analysis and synthesis of human gait patterns.<br>Journal of Vision, 2010, 1, 355-355.                                         | 0.3 | 1         |
| 100 | Searching for a "super foot" with evolutionary-guided adaptive psychophysics. Journal of Vision, 2010, 10, 784-784.                                                              | 0.3 | 1         |
| 101 | Perceptual biases in biological motion perception and other depth-ambiguous stimuli. Journal of Vision, 2010, 10, 792-792.                                                       | 0.3 | 2         |
| 102 | Gender and attractiveness from biological motion. Journal of Vision, 2010, 3, 86-86.                                                                                             | 0.3 | 7         |
| 103 | Perception of biological motion at varying eccentricity. Journal of Vision, 2010, 5, 16-16.                                                                                      | 0.3 | 8         |
| 104 | A pedestrian courtship: Attractiveness and symmetry of humans walking. Journal of Vision, 2010, 6,<br>797-797.                                                                   | 0.3 | 6         |
| 105 | A right-facing bias in the processing of biological motion?. Journal of Vision, 2010, 8, 913-913.                                                                                | 0.3 | 2         |
| 106 | Biological motion as a cue for the perception of absolute size. Journal of Vision, 2010, 1, 357-357.                                                                             | 0.3 | 2         |
| 107 | Visual sensitivity to acceleration: Effects of motion orientation, velocity, and size. Journal of Vision, 2010, 9, 686-686.                                                      | 0.3 | 1         |
| 108 | Biological motion targets have to be further away in virtual space for older versus younger adults<br>to maintain good performance. Journal of Vision, 2010, 9, 621-621.         | 0.3 | 0         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Intact biological motion processing in adults with autism. Journal of Vision, 2010, 9, 624-624.                                                                        | 0.3 | 0         |
| 110 | An illumination induced visual illusion that affects the perceived width of a human head. Journal of Vision, 2010, 1, 290-290.                                         | 0.3 | 0         |
| 111 | The local inversion effect in biological motion perception is acceleration-based. Journal of Vision, 2010, 8, 911-911.                                                 | 0.3 | 4         |
| 112 | Local motion versus global shape in biological motion: A reflexive orientation task. Journal of Vision, 2010, 10, 786-786.                                             | 0.3 | 0         |
| 113 | Distributions of fixations on biological motion displays depend on the task: Direction discrimination vs. gender classification. Journal of Vision, 2010, 10, 795-795. | 0.3 | 0         |
| 114 | Acceleration carries the local inversion effect in biological motion perception. Journal of Vision, 2009, 9, 19-19.                                                    | 0.3 | 91        |
| 115 | Characterizing global and local mechanisms in biological motion perception. Journal of Vision, 2009, 9, 8-8.                                                           | 0.3 | 104       |
| 116 | No evidence for impaired perception of biological motion in adults with autistic spectrum disorders.<br>Neuropsychologia, 2009, 47, 3225-3235.                         | 1.6 | 93        |
| 117 | Gender bending: auditory cues affect visual judgements of gender in biological motion displays.<br>Experimental Brain Research, 2009, 198, 373-382.                    | 1.5 | 29        |
| 118 | Vision during head bobbing: are pigeons capable of shape discrimination during the thrust phase?.<br>Experimental Brain Research, 2009, 199, 313-321.                  | 1.5 | 17        |
| 119 | Embodiment of Sadness and Depression—Gait Patterns Associated With Dysphoric Mood.<br>Psychosomatic Medicine, 2009, 71, 580-587.                                       | 2.0 | 320       |
| 120 | Off on the Wrong Foot: Local Features in Biological Motion. Perception, 2009, 38, 522-532.                                                                             | 1.2 | 29        |
| 121 | Differences in Gait Across the Menstrual Cycle and Their Attractiveness to Men. Archives of Sexual Behavior, 2008, 37, 598-604.                                        | 1.9 | 32        |
| 122 | Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vision Research, 2008, 48, 2827-2834.                   | 1.4 | 25        |
| 123 | Short-term mating strategies and attraction to masculinity in point-light walkers. Evolution and Human Behavior, 2008, 29, 65-69.                                      | 2.2 | 98        |
| 124 | Correlated changes in perceptions of the gender and orientation of ambiguous biological motion figures. Current Biology, 2008, 18, R728-R729.                          | 3.9 | 70        |
| 125 | Perception of biological motion in autism spectrum disorders. Neuropsychologia, 2008, 46, 1480-1494.                                                                   | 1.6 | 188       |
| 126 | Limits of intraocular and interocular transfer in pigeons. Behavioural Brain Research, 2008, 193, 69-78.                                                               | 2.2 | 12        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Perception of animacy and direction from local biological motion signals. Journal of Vision, 2008, 8, 3.                                                                                          | 0.3 | 77        |
| 128 | Biological motion perception is cue-invariant. Journal of Vision, 2008, 8, 6-6.                                                                                                                   | 0.3 | 14        |
| 129 | Amblyopic perception of biological motion. Journal of Vision, 2008, 8, 22.                                                                                                                        | 0.3 | 15        |
| 130 | 12 Retrieving Information from Human Movement Patterns. , 2008, , 308-334.                                                                                                                        |     | 59        |
| 131 | 3D Periodic Human Motion Reconstruction from 2D Motion Sequences. Neural Computation, 2007, 19, 1400-1421.                                                                                        | 2.2 | 12        |
| 132 | Peripheral vision: Good for biological motion, bad for signal noise segregation?. Journal of Vision, 2007, 7, 12.                                                                                 | 0.3 | 60        |
| 133 | Static and dynamic body image in bulimia nervosa: Mental representation of body dimensions and biological motion patterns. International Journal of Eating Disorders, 2007, 40, 59-66.            | 4.0 | 58        |
| 134 | Lateralized activation of Cluster N in the brains of migratory songbirds. European Journal of Neuroscience, 2007, 25, 1166-1173.                                                                  | 2.6 | 65        |
| 135 | Timing of ascending and descending visual signals predicts the response mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia). Brain Research, 2007, 1132, 100-109. | 2.2 | 5         |
| 136 | Kinematic cues for person identification from biological motion. Perception & Psychophysics, 2007, 69, 241-253.                                                                                   | 2.3 | 51        |
| 137 | Enhancing Depth Perception in Translucent Volumes. IEEE Transactions on Visualization and Computer Graphics, 2006, 12, 1117-1124.                                                                 | 4.4 | 42        |
| 138 | Limits of dynamic object perception in pigeons: Dynamic stimulus presentation does not enhance perception and discrimination of complex shape. Learning and Behavior, 2006, 34, 71-85.            | 1.0 | 10        |
| 139 | Towards a "virtual pigeon†A new technique for investigating avian social perception. Animal<br>Cognition, 2006, 9, 271-279.                                                                       | 1.8 | 25        |
| 140 | The Inversion Effect in Biological Motion Perception: Evidence for a "Life Detector�. Current Biology,<br>2006, 16, 821-824.                                                                      | 3.9 | 374       |
| 141 | Self Recognition versus Recognition of others by Biological Motion: Viewpoint-Dependent Effects.<br>Perception, 2006, 35, 911-920.                                                                | 1.2 | 100       |
| 142 | Adaptation aftereffects in the perception of gender from biological motion. Journal of Vision, 2006, 6,<br>7.                                                                                     | 0.3 | 106       |
| 143 | Eye Movements When Observing Predictable and Unpredictable Actions. Journal of Neurophysiology, 2006, 96, 1358-1369.                                                                              | 1.8 | 76        |
| 144 | Person identification from biological motion: Effects of structural and kinematic cues. Perception & Psychophysics, 2005, 67, 667-675.                                                            | 2.3 | 214       |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Differential involvement of the cerebellum in biological and coherent motion perception. European<br>Journal of Neuroscience, 2005, 21, 3439-3446.                                                                               | 2.6 | 47        |
| 146 | View-independent person identification from human gait. Neurocomputing, 2005, 69, 250-256.                                                                                                                                       | 5.9 | 50        |
| 147 | Range- and domain-specific exaggeration of facial speech. Journal of Vision, 2005, 5, 4.                                                                                                                                         | 0.3 | 17        |
| 148 | Motion as a cue for viewpoint invariance. Visual Cognition, 2005, 12, 1291-1308.                                                                                                                                                 | 1.6 | 26        |
| 149 | Structural encoding and recognition of biological motion: evidence from event-related potentials and source analysis. Behavioural Brain Research, 2005, 157, 195-204.                                                            | 2.2 | 108       |
| 150 | Detection of direction in scrambled motion: a simple "life detector"?. Journal of Vision, 2005, 5, 1058-1058.                                                                                                                    | 0.3 | 3         |
| 151 | Attractiveness, averageness, and sexual dimorphism in biological motion. Journal of Vision, 2005, 5, 943-943.                                                                                                                    | 0.3 | 2         |
| 152 | Biological motion versus coherent motion perception: The role of the cerebellum. Journal of Vision, 2005, 5, 934-934.                                                                                                            | 0.3 | 0         |
| 153 | Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than<br>Within-Category Object Recognition Journal of Experimental Psychology: Human Perception and<br>Performance, 2004, 30, 975-987. | 0.9 | 46        |
| 154 | Inverted gravity, not inverted shape impairs biological motion perception. Journal of Vision, 2004, 4, 227-227.                                                                                                                  | 0.3 | 5         |
| 155 | Self recognition versus recognition of others by biological motion: Viewpoint-dependent effects.<br>Journal of Vision, 2004, 4, 237-237.                                                                                         | 0.3 | 1         |
| 156 | Person identification from biological motion: information content of discrete Fourier components.<br>Journal of Vision, 2004, 4, 217-217.                                                                                        | 0.3 | 0         |
| 157 | Audiovisual phenomenal causality. Perception & Psychophysics, 2003, 65, 789-800.                                                                                                                                                 | 2.3 | 89        |
| 158 | Biological motion as a cue for the perception of size. Journal of Vision, 2003, 3, 1-1.                                                                                                                                          | 0.3 | 58        |
| 159 | Reference Frames for Orientation Anisotropies in Face Recognition and Biological-Motion Perception.<br>Perception, 2003, 32, 201-210.                                                                                            | 1.2 | 66        |
| 160 | Decomposing biological motion: A framework for analysis and synthesis of human gait patterns.<br>Journal of Vision, 2002, 2, 2.                                                                                                  | 0.3 | 766       |
| 161 | Electrophysiological and anatomical evidence for a direct projection from the nucleus of the basal optic root to the nucleus rotundus in pigeons. Neuroscience Letters, 2001, 305, 103-106.                                      | 2.1 | 15        |
| 162 | Head-bobbing in pigeons: how stable is the hold phase?. Journal of Experimental Biology, 2000, 203, 935-40.                                                                                                                      | 1.7 | 37        |

| #   | Article                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vision<br>Research, 1999, 39, 353-366. | 1.4 | 88        |
| 164 | Viewpoint-Dependent Recognition of Familiar Faces. Perception, 1999, 28, 483-487.                                                | 1.2 | 59        |
| 165 | How is bilateral symmetry of human faces used for recognition of novel views?. Vision Research, 1998, 38, 79-89.                 | 1.4 | 80        |
| 166 | Illumination-Induced Apparent Shift in Orientation of Human Heads. Perception, 1998, 27, 671-680.                                | 1.2 | 24        |
| 167 | Face recognition under varying poses: The role of texture and shape. Vision Research, 1996, 36, 1761-1771.                       | 1.4 | 369       |
| 168 | Phenomenal Competition for Poses of the Human Head. Perception, 1996, 25, 367-368.                                               | 1.2 | 3         |