

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3129340/publications.pdf Version: 2024-02-01

Yi Hou

#	Article	IF	CITATIONS
1	Synthesis, Applications, and Prospects of Quantumâ€Dotâ€inâ€Perovskite Solids. Advanced Energy Materials, 2022, 12, 2100774.	19.5	39
2	Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7, 229-237.	39.5	137
3	Monolithic Perovskite‧ilicon Tandem Solar Cells: From the Lab to Fab?. Advanced Materials, 2022, 34, e2106540.	21.0	92
4	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nature Photonics, 2022, 16, 352-358.	31.4	233
5	Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376, 762-767.	12.6	127
6	Developing the Next-Generation Perovskite/Si Tandems: Toward Efficient, Stable, and Commercially Viable Photovoltaics. ACS Applied Materials & Interfaces, 2022, 14, 34262-34268.	8.0	9
7	An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. Nature Communications, 2021, 12, 670.	12.8	58
8	Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy, 2021, 6, 167-175.	39.5	164
9	Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2010572.	14.9	12
10	Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. Nature Communications, 2021, 12, 2191.	12.8	77
11	Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films. ACS Applied Materials & Interfaces, 2021, 13, 18999-19007.	8.0	3
12	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized α sPbI 3 Perovskite. Angewandte Chemie, 2021, 133, 16300-16306.	2.0	1
13	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI ₃ Perovskite. Angewand Chemie - International Edition, 2021, 60, 16164-16170.	lte 13.8	210
14	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. ACS Energy Letters, 2021, 6, 2944-2951.	17.4	42
15	One-Step Synthesis of Snl ₂ ·(DMSO) _{<i>x</i>} Adducts for High-Performance Tin Perovskite Solar Cells. Journal of the American Chemical Society, 2021, 143, 10970-10976.	13.7	280
16	Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. Advanced Materials, 2021, 33, e2103394.	21.0	99
17	Quantum Dot Selfâ€Assembly Enables Lowâ€Threshold Lasing. Advanced Science, 2021, 8, e2101125.	11.2	28
18	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021, 143, 15606-15615.	13.7	94

#	Article	IF	CITATIONS
19	Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy and Environmental Science, 2021, 14, 4377-4390.	30.8	79
20	Engineering of the Electron Transport Layer/Perovskite Interface in Solar Cells Designed on TiO ₂ Rutile Nanorods. Advanced Functional Materials, 2020, 30, 1909738.	14.9	46
21	Visualizing and Suppressing Nonradiative Losses in High Open-Circuit Voltage n-i-p-Type CsPbI ₃ Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 271-279.	17.4	39
22	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. Accounts of Materials Research, 2020, 1, 63-76.	11.7	57
23	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5, 870-880.	39.5	497
24	Bifunctional Surface Engineering on SnO ₂ Reduces Energy Loss in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2796-2801.	17.4	239
25	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	12.8	86
26	Stable, Bromine-Free, Tetragonal Perovskites with 1.7 eV Bandgaps via A-Site Cation Substitution. , 2020, 2, 869-872.		18
27	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 5115-5119.	4.6	34
28	Chloride Insertion–Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. Journal of the American Chemical Society, 2020, 142, 5126-5134.	13.7	116
29	Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367, 1140-1146.	12.6	400
30	Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367, 1135-1140.	12.6	525
31	Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nature Communications, 2020, 11, 1257.	12.8	180
32	Regulating strain in perovskite thin films through charge-transport layers. Nature Communications, 2020, 11, 1514.	12.8	346
33	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	31.5	541
34	Combining Efficiency and Stability in Mixed Tin–Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. Advanced Materials, 2020, 32, e1907058.	21.0	148
35	Multi-cation perovskites prevent carrier reflection from grain surfaces. Nature Materials, 2020, 19, 412-418.	27.5	100
36	Heterogeneous Supersaturation in Mixed Perovskites. Advanced Science, 2020, 7, 1903166.	11.2	13

#	Article	IF	CITATIONS
37	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
38	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	24.0	222
39	Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines. Advanced Materials, 2019, 31, e1903559.	21.0	128
40	Perovskite Solar Cells: Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines (Adv. Mater. 46/2019). Advanced Materials, 2019, 31, 1970330.	21.0	1
41	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. ACS Energy Letters, 2019, 4, 1521-1527.	17.4	130
42	Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. Journal of Physical Chemistry Letters, 2019, 10, 2629-2640.	4.6	162
43	Ionic dipolar switching hinders charge collection in perovskite solar cells with normal and inverted hysteresis. Solar Energy Materials and Solar Cells, 2019, 195, 291-298.	6.2	29
44	Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. Journal of Materials Chemistry A, 2019, 7, 26020-26028.	10.3	44
45	Doubleâ€Sideâ€Passivated Perovskite Solar Cells with Ultraâ€low Potential Loss. Solar Rrl, 2019, 3, 1800296.	5.8	89
46	Assembling Mesoscale‧tructured Organic Interfaces in Perovskite Photovoltaics. Advanced Materials, 2019, 31, e1806516.	21.0	16
47	Switching Off Hysteresis in Perovskite Solar Cells by Fineâ€īuning Energy Levels of Extraction Layers. Advanced Energy Materials, 2018, 8, 1703376.	19.5	46
48	Evidence of Tailoring the Interfacial Chemical Composition in Normal Structure Hybrid Organohalide Perovskites by a Self-Assembled Monolayer. ACS Applied Materials & Interfaces, 2018, 10, 5511-5518.	8.0	32
49	Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach. Advanced Energy Materials, 2018, 8, 1701543.	19.5	75
50	Resolving a Critical Instability in Perovskite Solar Cells by Designing a Scalable and Printable Carbon Based Electrodeâ€Interface Architecture. Advanced Energy Materials, 2018, 8, 1802085.	19.5	33
51	The Interplay of Contact Layers: How the Electron Transport Layer Influences Interfacial Recombination and Hole Extraction in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2018, 9, 6249-6256.	4.6	68
52	Single molecular precursor ink for AgBiS ₂ thin films: synthesis and characterization. Journal of Materials Chemistry C, 2018, 6, 7642-7651.	5.5	20
53	Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing. Nature Communications, 2017, 8, 14541.	12.8	298
54	Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells. Advanced Materials Interfaces, 2017, 4, 1700007.	3.7	57

#	Article	IF	CITATIONS
55	A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358, 1192-1197.	12.6	554
56	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	21.0	188
57	Extending the environmental lifetime of unpackaged perovskite solar cells through interfacial design. Journal of Materials Chemistry A, 2016, 4, 11604-11610.	10.3	49
58	A Series of Pyrene‧ubstituted Silicon Phthalocyanines as Nearâ€IR Sensitizers in Organic Ternary Solar Cells. Advanced Energy Materials, 2016, 6, 1502355.	19.5	59
59	Exploring the Limiting Openâ€Circuit Voltage and the Voltage Loss Mechanism in Planar CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600132.	19.5	71
60	Coloring Semitransparent Perovskite Solar Cells <i>via</i> Dielectric Mirrors. ACS Nano, 2016, 10, 5104-5112.	14.6	100
61	Effective Ligand Engineering of the Cu ₂ ZnSnS ₄ Nanocrystal Surface for Increasing Hole Transport Efficiency in Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8300-8306.	14.9	72
62	Photoinduced degradation of methylammonium lead triiodide perovskite semiconductors. Journal of Materials Chemistry A, 2016, 4, 15896-15903.	10.3	119
63	Deciphering the Role of Impurities in Methylammonium Iodide and Their Impact on the Performance of Perovskite Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600593.	3.7	31
64	Organic and perovskite solar modules innovated by adhesive top electrode and depth-resolved laser patterning. Energy and Environmental Science, 2016, 9, 2302-2313.	30.8	64
65	Overcoming Electrodeâ€Induced Losses in Organic Solar Cells by Tailoring a Quasiâ€Ohmic Contact to Fullerenes via Solutionâ€Processed Alkali Hydroxide Layers. Advanced Energy Materials, 2016, 6, 1502195.	19.5	29
66	Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Lowâ€Cost and Waterâ€Free PEDOT Holeâ€Extraction Layer. Advanced Energy Materials, 2015, 5, 1500543.	19.5	81
67	Lowâ€Temperature and Hysteresisâ€Free Electronâ€Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501056.	19.5	69
68	Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Organic Electronics, 2015, 19, 113-119.	2.6	13
69	A Universal Interface Layer Based on an Amineâ€Functionalized Fullerene Derivative with Dual Functionality for Efficient Solution Processed Organic and Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1401692.	19.5	144
70	A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nature Communications, 2015, 6, 7730.	12.8	67
71	Elucidating the Excitedâ€State Properties of CuInS ₂ Nanocrystals upon Phase Transformation: <i>Quasi</i> â€Quantum Dots Versus Bulk Behavior. Advanced Electronic Materials, 2015, 1, 1500040.	5.1	5
72	Pushing efficiency limits for semitransparent perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24071-24081.	10.3	95

#	Article	IF	CITATIONS
73	Low-Temperature Solution-Processed Kesterite Solar Cell Based on in Situ Deposition of Ultrathin Absorber Layer. ACS Applied Materials & Interfaces, 2015, 7, 21100-21106.	8.0	28
74	Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance. Chemistry of Materials, 2015, 27, 227-234.	6.7	233
75	High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 2015, 7, 1642-1649.	5.6	300
76	In-situ X-ray diffraction analysis of the recrystallization process in Cu 2 ZnSnS 4 nanoparticles synthesised by hot-injection. Thin Solid Films, 2015, 582, 269-271.	1.8	10
77	Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy and Environmental Science, 2014, 7, 1829-1849.	30.8	187
78	Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer. Chemistry of Materials, 2014, 26, 5190-5193.	6.7	178
79	The multiple ways of making perovskite/silicon tandem solar cells: Which way to go?. , 0, , .		Ο