Kinji Ohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3127645/publications.pdf Version: 2024-02-01

Кімії Онмо

#	Article	IF	CITATIONS
1	Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson's Disease. PLoS ONE, 2015, 10, e0142164.	2.5	381
2	Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochemical and Biophysical Research Communications, 1990, 170, 1044-1048.	2.1	363
3	CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. Lancet Neurology, The, 2015, 14, 274-282.	10.2	285
4	Mutation of the acetylcholine receptor \hat{l} ± subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron, 1995, 15, 229-239.	8.1	273
5	Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the epsilon subunit Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 758-762.	7.1	256
6	Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2017-2022.	7.1	254
7	Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9654-9659.	7.1	249
8	Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain, 2004, 127, 439-451.	7.6	244
9	Congenital Myasthenic Syndrome Caused by Decreased Agonist Binding Affinity Due to a Mutation in the Acetylcholine Receptor ε Subunit. Neuron, 1996, 17, 157-170.	8.1	240
10	Rapsyn Mutations in Humans Cause Endplate Acetylcholine-Receptor Deficiency and Myasthenic Syndrome. American Journal of Human Genetics, 2002, 70, 875-885.	6.2	221
11	Human branch point consensus sequence is yUnAy. Nucleic Acids Research, 2008, 36, 2257-2267.	14.5	213
12	Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nature Reviews Neuroscience, 2003, 4, 339-352.	10.2	212
13	<scp>Metaâ€Analysis</scp> of Gut Dysbiosis in Parkinson's Disease. Movement Disorders, 2020, 35, 1626-1635.	3.9	208
14	Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles Medical Gas Research, 2015, 5, 12.	2.3	199
15	Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS ONE, 2017, 12, e0187307.	2.5	195
16	Molecular hydrogen is protective against 6-hydroxydopamine-induced nigrostriatal degeneration in a rat model of Parkinson's disease. Neuroscience Letters, 2009, 453, 81-85.	2.1	190
17	Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochemical and Biophysical Research Communications, 1990, 172, 483-489.	2.1	186
18	Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 1990, 170, 830-836.	2.1	184

#	Article	IF	CITATIONS
19	Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Scientific Reports, 2012, 2, 529.	3.3	180
20	New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Human Molecular Genetics, 1996, 5, 1217-1227.	2.9	176
21	Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7377-7382.	7.1	176
22	Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet, The, 1990, 336, 1452.	13.7	175
23	Congenital Myasthenic Syndromes due to Heteroallelic Nonsense/Missense Mutations in the Acetylcholine Receptor Subunit Gene: Identification and Functional Characterization of Six New Mutations. Human Molecular Genetics, 1997, 6, 753-766.	2.9	164
24	End-plate acetylcholine receptor deficiency due to nonsense mutations in the ? subunit. Annals of Neurology, 1996, 40, 810-817.	5.3	159
25	CUGBP1 and MBNL1 preferentially bind to 3′ UTRs and facilitate mRNA decay. Scientific Reports, 2012, 2, 209.	3.3	150
26	Slow-Channel Myasthenic Syndrome Caused By Enhanced Activation, Desensitization, and Agonist Binding Affinity Attributable to Mutation in the M2 Domain of the Acetylcholine Receptor α Subunit. Journal of Neuroscience, 1997, 17, 5651-5665.	3.6	147
27	Maternal inheritance of deleted mitochondrial DNA in a family with mitochondrial myopathy. Biochemical and Biophysical Research Communications, 1988, 154, 1240-1247.	2.1	141
28	Mutation in the M1 Domain of the Acetylcholine Receptor α Subunit Decreases the Rate of Agonist Dissociation. Journal of General Physiology, 1997, 109, 757-766.	1.9	138
29	Congenital myasthenic syndromes: Progress over the past decade. Muscle and Nerve, 2003, 27, 4-25.	2.2	130
30	Molecular Hydrogen as an Emerging Therapeutic Medical Gas for Neurodegenerative and Other Diseases. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-11.	4.0	130
31	FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization. Nature Communications, 2015, 6, 7098.	12.8	129
32	The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Annals of Neurology, 2000, 47, 162-170.	5.3	123
33	Molecular hydrogen suppresses FcεRI-mediated signal transduction and prevents degranulation of mast cells. Biochemical and Biophysical Research Communications, 2009, 389, 651-656.	2.1	122
34	Distinct clustering of point mutations in mitochondrial DNA among patients with mitochondrial encephalomyopathies and with Parkinson's disease. Biochemical and Biophysical Research Communications, 1991, 176, 938-946.	2.1	119
35	Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nature Neuroscience, 1999, 2, 226-233.	14.8	119
36	Anti-MuSK autoantibodies block binding of collagen Q to MuSK. Neurology, 2011, 77, 1819-1826.	1.1	112

#	Article	IF	CITATIONS
37	Patients with idiopathic cardiomyopathy belong to the same mitochondrial DNA gene family of Parkinson's disease and mitochondrial encephalomyopathy. Biochemical and Biophysical Research Communications, 1991, 177, 518-525.	2.1	111
38	Mode Switching Kinetics Produced by a Naturally Occurring Mutation in the Cytoplasmic Loop of the Human Acetylcholine Receptor ε Subunit. Neuron, 1998, 20, 575-588.	8.1	109
39	Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Research, 2007, 35, e123.	14.5	109
40	Congenital Myasthenic Syndromes. Archives of Neurology, 1999, 56, 163.	4.5	106
41	Position-specific binding of FUS to nascent RNA regulates mRNA length. Genes and Development, 2015, 29, 1045-1057.	5.9	98
42	Mitochondrial DNA deletions in inherited recurrent myoglobinuria. Annals of Neurology, 1991, 29, 364-369.	5.3	97
43	LRP4 third β-propeller domain mutations cause novel congenital myasthenia by compromising agrin-mediated MuSK signaling in a position-specific manner. Human Molecular Genetics, 2014, 23, 1856-1868.	2.9	96
44	Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1451.	6.4	90
45	Mitochondrial DNA mutations in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Biochemical and Biophysical Research Communications, 1991, 174, 861-868.	2.1	89
46	Congenital End-Plate Acetylcholinesterase Deficiency Caused by a Nonsense Mutation and an A→G Splice-Donor–Site Mutation at Position +3 of the Collagenlike-Tail–Subunit Gene (COLQ): How Does G at Position +3 Result in Aberrant Splicing?. American Journal of Human Genetics, 1999, 65, 635-644.	6.2	88
47	Molecular hydrogen inhibits lipopolysaccharide/interferon γ-induced nitric oxide production through modulation of signal transduction in macrophages. Biochemical and Biophysical Research Communications, 2011, 411, 143-149.	2.1	88
48	Dopaminergic differentiation of stem cells from human deciduous teeth and their therapeutic benefits for Parkinsonian rats. Brain Research, 2015, 1613, 59-72.	2.2	87
49	Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson's disease in rats. Medical Gas Research, 2012, 2, 15.	2.3	86
50	E-box mutations in the RAPSN promoter region in eight cases with congenital myasthenic syndrome. Human Molecular Genetics, 2003, 12, 739-748.	2.9	83
51	Congenital myasthenic syndrome caused by a mutation in the Ets-binding site of the promoter region of the acetylcholine receptor ϵ subunit gene. Neuromuscular Disorders, 1999, 9, 131-135.	0.6	81
52	C-terminal and Heparin-binding Domains of Collagenic Tail Subunit Are Both Essential for Anchoring Acetylcholinesterase at the Synapse. Journal of Biological Chemistry, 2004, 279, 10997-11005.	3.4	78
53	Fundamental Gating Mechanism of Nicotinic Receptor Channel Revealed by Mutation Causing a Congenital Myasthenic Syndrome. Journal of General Physiology, 2000, 116, 449-462.	1.9	77
54	Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain. Cell Reports, 2018, 23, 1326-1341.	6.4	75

#	Article	IF	CITATIONS
55	Congenital myasthenic syndrome associated with episodic apnea and sudden infant death. Neuromuscular Disorders, 2002, 12, 548-553.	0.6	72
56	Myasthenic syndrome caused by plectinopathy. Neurology, 2011, 76, 327-336.	1.1	71
57	Mutation causing congenital myasthenia reveals acetylcholine receptor $\hat{I}^2/\hat{I}^{'}$ subunit interaction essential for assembly. Journal of Clinical Investigation, 1999, 104, 1403-1410.	8.2	71
58	Open-label trial and randomized, double-blind, placebo-controlled, crossover trial of hydrogen-enriched water for mitochondrial and inflammatory myopathies. Medical Gas Research, 2011, 1, 24.	2.3	69
59	Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating. Journal of Clinical Investigation, 2003, 111, 497-505.	8.2	68
60	Myasthenic syndromes in Turkish kinships due to mutations in the acetylcholine receptor. Annals of Neurology, 1998, 44, 234-241.	5.3	67
61	Verapamil Protects against Cartilage Degradation in Osteoarthritis by Inhibiting Wnt/β-Catenin Signaling. PLoS ONE, 2014, 9, e92699.	2.5	67
62	Myasthenic syndrome due to defects in rapsyn. Neurology, 2009, 73, 228-235.	1.1	65
63	Multiple populations of deleted mitochondrial DNA detected by a novel gene amplification method. Biochemical and Biophysical Research Communications, 1989, 162, 664-672.	2.1	64
64	Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson's Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. MSystems, 2020, 5, .	3.8	63
65	Global identification of hnRNP A1 binding sites for SSO-based splicing modulation. BMC Biology, 2016, 14, 54.	3.8	62
66	In vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5′ splice sites. Nucleic Acids Research, 2007, 35, 5995-6003.	14.5	60
67	Naturally Occurring Mutations at the Acetylcholine Receptor Binding Site Independently Alter ACh Binding and Channel Gating. Journal of General Physiology, 2002, 120, 483-496.	1.9	59
68	A Kir3.4 mutation causes Andersen–Tawil syndrome by an inhibitory effect on Kir2.1. Neurology, 2014, 82, 1058-1064.	1.1	59
69	MELAS―and kearnsâ€sayreâ€type with myopathy and autoimmune polyendocrinopahy. Annals of Neurology, 1996, 39, 761-766.	5.3	57
70	Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders. EMBO Journal, 2004, 23, 2047-2058.	7.8	57
71	Direct sequencing of deleted mitochondrial DNA in myopathic patients. Biochemical and Biophysical Research Communications, 1989, 164, 156-163.	2.1	55
72	Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor. NeuroReport, 1998, 9, 1907-1911.	1.2	55

#	Article	IF	CITATIONS
73	Three novel <i>COLQ</i> mutations and variation of phenotypic expressivity due to G240X. Neurology, 2002, 58, 603-609.	1.1	54
74	hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Human Molecular Genetics, 2008, 17, 4022-4035.	2.9	54
75	GFPT1-myasthenia. Neurology, 2013, 81, 370-378.	1.1	54
76	Collagen Q and anti-MuSK autoantibody competitively suppress agrin/LRP4/MuSK signaling. Scientific Reports, 2015, 5, 13928.	3.3	54
77	Competitive regulation of alternative splicing and alternative polyadenylation by hnRNP H and CstF64 determines acetylcholinesterase isoforms. Nucleic Acids Research, 2016, 45, gkw823.	14.5	53
78	The ALS/FTLDâ€related RNAâ€binding proteins TDPâ€43 and FUS have common downstream RNA targets in cortical neurons. FEBS Open Bio, 2014, 4, 1-10.	2.3	50
79	Congenital myasthenia–related AChR δ subunit mutation interferes with intersubunit communication essential for channel gating. Journal of Clinical Investigation, 2008, 118, 1867-1876.	8.2	50
80	Congenital Myasthenic Syndromes: Multiple Molecular Targets at the Neuromuscular Junction. Annals of the New York Academy of Sciences, 2003, 998, 138-160.	3.8	49
81	Meclozine Facilitates Proliferation and Differentiation of Chondrocytes by Attenuating Abnormally Activated FGFR3 Signaling in Achondroplasia. PLoS ONE, 2013, 8, e81569.	2.5	46
82	Meclozine Promotes Longitudinal Skeletal Growth in Transgenic Mice with Achondroplasia Carrying a Gain-of-Function Mutation in the FGFR3 Gene. Endocrinology, 2015, 156, 548-554.	2.8	44
83	Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opinion on Therapeutic Targets, 2017, 21, 949-958.	3.4	44
84	Wnt/β-catenin signaling suppresses expressions of Scx, Mkx, and Tnmd in tendon-derived cells. PLoS ONE, 2017, 12, e0182051.	2.5	44
85	Simultaneous oral and inhalational intake of molecular hydrogen additively suppresses signaling pathways in rodents. Molecular and Cellular Biochemistry, 2015, 403, 231-241.	3.1	43
86	Intestinal Collinsella may mitigate infection and exacerbation of COVID-19 by producing ursodeoxycholate. PLoS ONE, 2021, 16, e0260451.	2.5	42
87	FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Scientific Reports, 2013, 3, 2388.	3.3	41
88	HnRNP L and hnRNP LL antagonistically modulate PTB-mediated splicing suppression of CHRNA1 pre-mRNA. Scientific Reports, 2013, 3, 2931.	3.3	41
89	Impaired Synaptic Development, Maintenance, and Neuromuscular Transmission in LRP4-Related Myasthenia. JAMA Neurology, 2015, 72, 889.	9.0	41
90	Neuroprotective potential of molecular hydrogen against perinatal brain injury via suppression of activated microglia. Free Radical Biology and Medicine, 2016, 91, 154-163.	2.9	41

#	Article	IF	CITATIONS
91	Rare loss of function mutations in N-methyl-d-aspartate glutamate receptors and their contributions to schizophrenia susceptibility. Translational Psychiatry, 2018, 8, 12.	4.8	41
92	Quantification of hydrogen production by intestinal bacteria that are specifically dysregulated in Parkinson's disease. PLoS ONE, 2018, 13, e0208313.	2.5	41
93	Parkinson's Disease and Gut Microbiota. Annals of Nutrition and Metabolism, 2021, 77, 28-35.	1.9	41
94	Short chain fatty acids-producing and mucin-degrading intestinal bacteria predict the progression of early Parkinson's disease. Npj Parkinson's Disease, 2022, 8, .	5.3	41
95	Ancestral Origin of the ATTCT Repeat Expansion in Spinocerebellar Ataxia Type 10 (SCA10). PLoS ONE, 2009, 4, e4553.	2.5	40
96	Hydrogen ameliorates pulmonary hypertension in rats by anti-inflammatory and antioxidant effects. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 645-654.e3.	0.8	40
97	Novel truncating RAPSN mutations causing congenital myasthenic syndrome responsive to 3,4-diaminopyridine. Neuromuscular Disorders, 2004, 14, 202-207.	0.6	39
98	<i>MYRF</i> is associated with encephalopathy with reversible myelin vacuolization. Annals of Neurology, 2018, 83, 98-106.	5.3	35
99	<scp>FUS</scp> â€mediated regulation of alternative <scp>RNA</scp> processing in neurons: insights from global transcriptome analysis. Wiley Interdisciplinary Reviews RNA, 2016, 7, 330-340.	6.4	34
100	Mitochondrial leucine tRNA mutation in a mitochondrial encephalomyopathy. Lancet, The, 1991, 337, 234-235.	13.7	33
101	Essential Role of GATA Transcriptional Factors in the Activation of Mast Cells. Journal of Immunology, 2007, 178, 360-368.	0.8	32
102	Mutations in the C-Terminal Domain of ColQ in Endplate Acetylcholinesterase Deficiency Compromise ColQ-MuSK Interaction. Human Mutation, 2013, 34, 997-1004.	2.5	32
103	Noninvasive monitoring of plasma l-dopa concentrations using sweat samples in Parkinson's disease. Clinica Chimica Acta, 2015, 442, 52-55.	1.1	32
104	Molecular and Genetic Analyses of Two Patients with Pearson's Marrow-Pancreas Syndrome. Pediatric Research, 1993, 34, 105-110.	2.3	31
105	HnRNP C, YB-1 and hnRNP L coordinately enhance skipping of human MUSK exon 10 to generate a Wnt-insensitive MuSK isoform. Scientific Reports, 2014, 4, 6841.	3.3	31
106	R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification. Biochemical and Biophysical Research Communications, 2016, 473, 255-264.	2.1	31
107	Inhalation of hydrogen gas elevates urinary 8-hydroxy-2′-deoxyguanine in Parkinson's disease. Medical Gas Research, 2018, 8, 144.	2.3	31
108	Congenital myasthenic syndromes: Genetic defects of the neuromuscular junction. Current Neurology and Neuroscience Reports, 2002, 2, 78-88.	4.2	30

#	Article	IF	CITATIONS
109	Urinary 8-hydroxydeoxyguanosine correlate with hallucinations rather than motor symptoms in Parkinson's disease. Parkinsonism and Related Disorders, 2011, 17, 46-49.	2.2	30
110	SRSF1 and hnRNP H antagonistically regulate splicing of COLQ exon 16 in a congenital myasthenic syndrome. Scientific Reports, 2015, 5, 13208.	3.3	30
111	A frameshifting mutation in CHRNE unmasks skipping of the preceding exon. Human Molecular Genetics, 2003, 12, 3055-3066.	2.9	29
112	Subunit-specific contribution to agonist binding and channel gating revealed by inherited mutation in muscle acetylcholine receptor M3-M4 linker. Brain, 2004, 128, 345-355.	7.6	29
113	Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genomics, 2013, 14, 248.	2.8	29
114	<scp> <i>SIL1</i> </scp> , a causative cochaperone gene of <scp>M</scp> arinesco― <scp>S</scp> jögren syndrome, plays an essential role in establishing the architecture of the developing cerebral cortex. EMBO Molecular Medicine, 2014, 6, 414-429.	6.9	29
115	Maternal molecular hydrogen administration ameliorates rat fetal hippocampal damage caused by in utero ischemia–reperfusion. Free Radical Biology and Medicine, 2014, 69, 324-330.	2.9	29
116	Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Scientific Reports, 2016, 6, 25317.	3.3	29
117	IntSplice: prediction of the splicing consequences of intronic single-nucleotide variations in the human genome. Journal of Human Genetics, 2016, 61, 633-640.	2.3	29
118	Tannic acid facilitates expression of the polypyrimidine tract binding protein and alleviates deleterious inclusion of CHRNA1 exon P3A due to an hnRNP H-disrupting mutation in congenital myasthenic syndrome. Human Molecular Genetics, 2009, 18, 1229-1237.	2.9	28
119	AC-dependent 3′-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Research, 2011, 39, 4396-4404.	14.5	28
120	Protein-anchoring Strategy for Delivering Acetylcholinesterase to the Neuromuscular Junction. Molecular Therapy, 2012, 20, 1384-1392.	8.2	28
121	Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model. PLoS ONE, 2015, 10, e0142786.	2.5	28
122	REVIEW â– : Molecular Basis of Congenital Myasthenic Syndromes: Mutations in the Acetylcholine Receptor. Neuroscientist, 1998, 4, 185-194.	3.5	27
123	Polymorphisms in Four Genes (KCNQ1 rs151290, KLF14 rs972283, GCKR rs780094 and MTNR1B rs10830963) and Their Correlation with Type 2 Diabetes Mellitus in Han Chinese in Henan Province, China. International Journal of Environmental Research and Public Health, 2016, 13, 260.	2.6	27
124	Fluoxetine ameliorates cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE, 2017, 12, e0184388.	2.5	27
125	The Unstable CCTG Repeat Responsible for Myotonic Dystrophy Type 2 Originates from an AluSx Element Insertion into an Early Primate Genome. PLoS ONE, 2012, 7, e38379.	2.5	26
126	LDB3 splicing abnormalities are specific to skeletal muscles of patients with myotonic dystrophy type 1 and alter its PKC binding affinity. Neurobiology of Disease, 2014, 69, 200-205.	4.4	26

#	Article	IF	CITATIONS
127	Randomized, doubleâ€blind, multicenter trial of hydrogen water for Parkinson's disease. Movement Disorders, 2018, 33, 1505-1507.	3.9	26
128	LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation. Biochemical and Biophysical Research Communications, 2014, 451, 302-307.	2.1	25
129	Molecular hydrogen ameliorates several characteristics of preeclampsia in the Reduced Uterine Perfusion Pressure (RUPP) rat model. Free Radical Biology and Medicine, 2016, 101, 524-533.	2.9	25
130	R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Scientific Reports, 2016, 6, 28512.	3.3	24
131	Increased Mitochondrial DNA Deletions in the Skeletal Muscle of Myotonic Dystrophy. Gerontology, 1992, 38, 18-29.	2.8	23
132	S100A10 is required for the organization of actin stress fibers and promotion of cell spreading. Molecular and Cellular Biochemistry, 2013, 374, 105-111.	3.1	23
133	Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats. Pediatric Pulmonology, 2016, 51, 928-935.	2.0	23
134	Freeze-drying enables homogeneous and stable sample preparation for determination of fecal short-chain fatty acids. Analytical Biochemistry, 2020, 589, 113508.	2.4	23
135	The Spectrum of Congenital Myasthenic Syndromes. Molecular Neurobiology, 2002, 26, 347-367.	4.0	21
136	Myotonic dystrophy type 2 in Japan: ancestral origin distinct from Caucasian families. Neurogenetics, 2008, 9, 61-63.	1.4	21
137	Congenital myasthenic syndromes: A diverse array of molecular targets. Journal of Neurocytology, 2003, 32, 1017-1037.	1.5	20
138	The 2011 Medical Molecular Hydrogen Symposium: An inaugural symposium of the journal Medical Gas Research. Medical Gas Research, 2011, 1, 10.	2.3	20
139	Molecular hydrogen attenuates fatty acid uptake and lipid accumulation through downregulating CD36 expression in HepG2 cells. Medical Gas Research, 2013, 3, 6.	2.3	20
140	Molecular hydrogen suppresses activated Wnt/ \hat{l}^2 -catenin signaling. Scientific Reports, 2016, 6, 31986.	3.3	20
141	Splicing regulation and dysregulation of cholinergic genes expressed at the neuromuscular junction. Journal of Neurochemistry, 2017, 142, 64-72.	3.9	20
142	Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. International Journal of Molecular Sciences, 2021, 22, 2455.	4.1	20
143	Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating. Human Mutation, 2016, 37, 1051-1059.	2.5	19
144	Molecular hydrogen alleviates motor deficits and muscle degeneration in <i>mdx</i> mice. Redox Report, 2017, 22, 26-34.	4.5	19

#	Article	IF	CITATIONS
145	Protein-Anchoring Therapy of Biglycan for <i>Mdx</i> Mouse Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 2017, 28, 428-436.	2.7	19
146	Mianserin suppresses R-spondin 2-induced activation of Wnt/β-catenin signaling in chondrocytes and prevents cartilage degradation in a rat model of osteoarthritis. Scientific Reports, 2019, 9, 2808.	3.3	19
147	Lack of founder haplotype for the rapsyn N88K mutation: N88K is an ancient founder mutation or arises from multiple founders. Journal of Medical Genetics, 2004, 41, 8e-8.	3.2	18
148	A missense mutation in domain III in HSPG2 in Schwartz–Jampel syndrome compromises secretion of perlecan into the extracellular space. Neuromuscular Disorders, 2015, 25, 667-671.	0.6	18
149	Congenital myasthenic syndrome in Japan: Ethnically unique mutations in muscle nicotinic acetylcholine receptor subunits. Neuromuscular Disorders, 2015, 25, 60-69.	0.6	18
150	Identification of Qk as a Glial Precursor Cell Marker that Governs the Fate Specification of Neural Stem Cells to a Glial Cell Lineage. Stem Cell Reports, 2020, 15, 883-897.	4.8	18
151	tRIPâ€seq reveals repression of premature polyadenylation by coâ€ŧranscriptional FUSâ€U1 snRNP assembly. EMBO Reports, 2020, 21, e49890.	4.5	18
152	Congenital Myasthenic Syndromes: New Insights from Molecular Genetic and Patch-Clamp Studiesa. Annals of the New York Academy of Sciences, 1998, 841, 140-156.	3.8	17
153	Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries. Journal of Medical Genetics, 2005, 42, e53-e53.	3.2	17
154	Clinically applicable antianginal agents suppress osteoblastic transformation of myogenic cells and heterotopic ossifications in mice. Journal of Bone and Mineral Metabolism, 2012, 31, 26-33.	2.7	17
155	Searching for Genomic Region of High-Fat Diet-Induced Type 2 Diabetes in Mouse Chromosome 2 by Analysis of Congenic Strains. PLoS ONE, 2014, 9, e96271.	2.5	17
156	Serum Tyrosine-to-Phenylalanine Ratio isÂLow in Parkinson's Disease. Journal of Parkinson's Disease, 2016, 6, 423-431.	2.8	17
157	A novel mutation in SCN4A causes severe myotonia and school-age-onset paralytic episodes. Journal of the Neurological Sciences, 2012, 315, 15-19.	0.6	16
158	Molecular hydrogen upregulates heat shock response and collagen biosynthesis, and downregulates cell cycles: meta-analyses of gene expression profiles. Free Radical Research, 2018, 52, 434-445.	3.3	16
159	InMeRF: prediction of pathogenicity of missense variants by individual modeling for each amino acid substitution. NAR Genomics and Bioinformatics, 2020, 2, Iqaa038.	3.2	16
160	AChR Channel Blockade by Quinidine Sulfate Reduces Channel Open Duration in the Slow-Channel Congenital Myasthenic Syndromea. Annals of the New York Academy of Sciences, 1998, 841, 199-202.	3.8	15
161	Four parameters increase the sensitivity and specificity of the exon array analysis and disclose 25 novel aberrantly spliced exons in myotonic dystrophy. Journal of Human Genetics, 2012, 57, 368-374.	2.3	15
162	Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis. EBioMedicine, 2015, 2, 2046-2061.	6.1	15

#	Article	IF	CITATIONS
163	Clinical dosage of meclozine promotes longitudinal bone growth, bone volume, and trabecular bone quality in transgenic mice with achondroplasia. Scientific Reports, 2017, 7, 7371.	3.3	15
164	Congenital myasthenic syndrome–associated agrin variants affect clustering of acetylcholine receptors in a domain-specific manner. JCI Insight, 2020, 5, .	5.0	15
165	CTGF/CCN2 facilitates LRP4â€mediated formation of the embryonic neuromuscular junction. EMBO Reports, 2020, 21, e48462.	4.5	15
166	Specific amplification of deleted mitochondrial DNA from a myopathic patient and analysis of deleted region with S1 nuclease. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1009, 151-155.	2.4	14
167	Specific binding of collagen Q to the neuromuscular junction is exploited to cure congenital myasthenia and to explore bases of myasthenia gravis. Chemico-Biological Interactions, 2013, 203, 335-340.	4.0	14
168	Perhexiline maleate in the treatment of fibrodysplasia ossificans progressiva: an open-labeled clinical trial. Orphanet Journal of Rare Diseases, 2013, 8, 163.	2.7	14
169	Activated FGFR3 promotes bone formation via accelerating endochondral ossification in mouse model of distraction osteogenesis. Bone, 2017, 105, 42-49.	2.9	14
170	Frameshifting and Splice-Site Mutations in the Acetylcholine Receptor e Subunit Gene in Three Turkish Kinships with Congenital Myasthenic Syndromesa. Annals of the New York Academy of Sciences, 1998, 841, 189-194.	3.8	13
171	Mechanistic Diversity Underlying Fast Channel Congenital Myasthenic Syndromes. Annals of the New York Academy of Sciences, 2003, 998, 128-137.	3.8	13
172	Functional characterisation of mitochondrial tRNATyr mutation (5877Gright-arrowA) associated with familial chronic progressive external ophthalmoplegia. Journal of Medical Genetics, 2001, 38, 703-705.	3.2	12
173	Myotonic dystrophy type 2 is rare in the Japanese population. Journal of Human Genetics, 2012, 57, 219-220.	2.3	12
174	A simple analytical method involving the use of a monolithic silica disk-packed spin column and HPLC-ECD for determination of l-DOPA in plasma of patients with Parkinson's disease. Analytical Methods, 2013, 5, 5161.	2.7	12
175	Roles of collagen Q in MuSK antibody-positive myasthenia gravis. Chemico-Biological Interactions, 2016, 259, 266-270.	4.0	12
176	Promethazine Hydrochloride Inhibits Ectopic Fat Cell Formation in Skeletal Muscle. American Journal of Pathology, 2017, 187, 2627-2634.	3.8	12
177	Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Scientific Reports, 2018, 8, 434.	3.3	12
178	Gene Expression Profile at the Motor Endplate of the Neuromuscular Junction of Fast-Twitch Muscle. Frontiers in Molecular Neuroscience, 2020, 13, 154.	2.9	12
179	Inhibition of cyclooxygenase-1 by nonsteroidal anti-inflammatory drugs demethylates MeR2 enhancer and promotes Mbnl1 transcription in myogenic cells. Scientific Reports, 2020, 10, 2558.	3.3	12
180	Molecular Hydrogen Enhances Proliferation of Cancer Cells That Exhibit Potent Mitochondrial Unfolded Protein Response. International Journal of Molecular Sciences, 2022, 23, 2888.	4.1	12

#	Article	IF	CITATIONS
181	Alu-Mediated Acquisition of Unstable ATTCT Pentanucleotide Repeats in the Human ATXN10 Gene. Molecular Biology and Evolution, 2009, 26, 2573-2579.	8.9	11
182	Differential effects of spinal motor neuron-derived and skeletal muscle-derived Rspo2 on acetylcholine receptor clustering at the neuromuscular junction. Scientific Reports, 2018, 8, 13577.	3.3	11
183	Zonisamide ameliorates progression of cervical spondylotic myelopathy in a rat model. Scientific Reports, 2020, 10, 13138.	3.3	10
184	Altered gut microbiota in Parkinson's disease patients with motor complications. Parkinsonism and Related Disorders, 2022, 95, 11-17.	2.2	10
185	Congenital myasthenic syndromes: Experiments of nature. Journal of Physiology (Paris), 1998, 92, 113-117.	2.1	9
186	Recent advances in congenital myasthenic syndromes. Clinical and Experimental Neuroimmunology, 2016, 7, 246-259.	1.0	9
187	Six GU-rich (6GUR) FUS-binding motifs detected by normalization of CLIP-seq by Nascent-seq. Gene, 2017, 618, 57-64.	2.2	9
188	Desloratadine inhibits heterotopic ossification by suppression of BMP2â€ s mad1/5/8 signaling. Journal of Orthopaedic Research, 2021, 39, 1297-1304.	2.3	9
189	Plasmaâ€activated Ringer's lactate solution inhibits the cellular respiratory system in HeLa cells. Plasma Processes and Polymers, 2021, 18, 2100056.	3.0	9
190	Extremely low-frequency pulses of faint magnetic field induce mitophagy to rejuvenate mitochondria. Communications Biology, 2022, 5, 453.	4.4	9
191	Effects of preceding sialadenitis on the development of autoimmunity against salivary gland. Oral Diseases, 2007, 13, 158-162.	3.0	8
192	Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8. Human Genetics, 2011, 130, 671-683.	3.8	8
193	Collagen Q is a Key Player for Developing Rational Therapy for Congenital Myasthenia and for Dissecting the Mechanisms of Anti-MuSK Myasthenia Gravis. Journal of Molecular Neuroscience, 2014, 53, 359-361.	2.3	8
194	Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters. Biochemical and Biophysical Research Communications, 2016, 470, 356-361.	2.1	8
195	Interactions between genetic polymorphisms of glucose metabolizing genes and smoking and alcohol consumption in the risk of type 2 diabetes mellitus. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1316-1321.	1.9	8
196	Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biology, 2018, 68-69, 628-636.	3.6	8
197	Regulated splicing of large exons is linked to phaseâ€separation of vertebrate transcription factors. EMBO Journal, 2021, 40, e107485.	7.8	8
198	Direct DNA sequencing from colony: analysis of multiple deletions of mitochondrial genome. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1090, 9-16.	2.4	7

#	Article	IF	CITATIONS
199	Progressive External Ophthalmoplegia and Myositis Internal Medicine, 1993, 32, 319-322.	0.7	7
200	An ENU-induced splice site mutation of mouse Col1a1 causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Scientific Reports, 2017, 7, 11717.	3.3	7
201	Maternal administration of meclozine for the treatment of foramen magnum stenosis in transgenic mice with achondroplasia. Journal of Neurosurgery: Pediatrics, 2017, 19, 91-95.	1.3	7
202	Zonisamide ameliorates neuropathic pain partly by suppressing microglial activation in the spinal cord in a mouse model. Life Sciences, 2020, 263, 118577.	4.3	7
203	Rapidly Growing Protein-Centric Technologies to Extensively Identify Protein–RNA Interactions: Application to the Analysis of Co-Transcriptional RNA Processing. International Journal of Molecular Sciences, 2021, 22, 5312.	4.1	7
204	Congenital myasthenic syndromes. Advances in Neurology, 2002, 88, 203-15.	0.8	7
205	Congenital Myasthenic Syndrome Caused by Novel Loss-of-Function Mutations in the Human AChR e Subunit Genea. Annals of the New York Academy of Sciences, 1998, 841, 184-188.	3.8	6
206	IntSplice2: Prediction of the Splicing Effects of Intronic Single-Nucleotide Variants Using LightGBM Modeling. Frontiers in Genetics, 2021, 12, 701076.	2.3	6
207	Cytoplasmic body and mitochondrial DNA deletion. Journal of the Neurological Sciences, 1990, 99, 291-300.	0.6	5
208	Repositioning again of zonisamide for nerve regeneration. Neural Regeneration Research, 2016, 11, 541.	3.0	5
209	Splicing abnormalities in congenital myasthenic syndromes. Acta Myologica, 2005, 24, 50-4.	1.5	5
210	Glycosylation defects as an emerging novel cause leading to a limb-girdle type of congenital myasthenic syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 1064-1064.	1.9	4
211	Clinical and genetic analysis of the first known Asian family with myotonic dystrophy type 2. Journal of Human Genetics, 2014, 59, 129-133.	2.3	4
212	SRSF1 suppresses selection of intron-distal 5′ splice site of DOK7 intron 4 to generate functional full-length Dok-7 protein. Scientific Reports, 2017, 7, 10446.	3.3	4
213	Hydrogen water alleviates obliterative airway disease in mice. General Thoracic and Cardiovascular Surgery, 2020, 68, 158-163.	0.9	4
214	Long-range PCR for the diagnosis of spinocerebellar ataxia type 10. Neurogenetics, 2008, 9, 151-152.	1.4	3
215	Congenital Myasthenic Syndromes - Molecular Bases of Congenital Defects of Proteins at the Neuromuscular Junction. , 0, , .		3
216	Is the serum creatine kinase level elevated in congenital myasthenic syndrome?. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 801-801.	1.9	3

#	Article	IF	CITATIONS
217	Possible Repositioning of an Oral Anti-Osteoporotic Drug, Ipriflavone, for Treatment of Inflammatory Arthritis via Inhibitory Activity of KIAA1199, a Novel Potent Hyaluronidase. International Journal of Molecular Sciences, 2022, 23, 4089.	4.1	3
218	Differently deleted mitochondrial genomes in maternally inherited chronic progressive external ophthalmoplegia. Journal of Inherited Metabolic Disease, 1989, 12, 359-362.	3.6	2
219	Congenital myasthenic syndromes. European Journal of Paediatric Neurology, 2003, 7, 227-228.	1.6	2
220	Mutation analysis of a large cohort of GNE myopathy reveals a diverse array of GNE mutations affecting sialic acid biosynthesis. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 831-831.	1.9	2
221	Efficacy of salbutamol monotherapy in slow hannel congenital myasthenic syndrome caused by a novel mutation in <i>CHRND</i> . Muscle and Nerve, 2021, 63, E30-E32.	2.2	2
222	Zonisamide upregulates neuregulin-1 expression and enhances acetylcholine receptor clustering at the in vitro neuromuscular junction. Neuropharmacology, 2021, 195, 108637.	4.1	2
223	Mitochondrial DNA Mutations as an Etiology of Human Degenerative Diseases. , 1990, , 413-427.		2
224	Congenital myasthenic syndromes. , 2004, , 213-226.		2
225	Promethazine Downregulates Wnt/β-Catenin Signaling and Increases the Biomechanical Forces of the Injured Achilles Tendon in the Early Stage of Healing. American Journal of Sports Medicine, 2022, 50, 1317-1327.	4.2	2
226	LRP4 myasthenia: Investigation of a second kinship reveals impaired development and maintenance of the neuromuscular junction. Neuromuscular Disorders, 2015, 25, S186-S187.	0.6	1
227	Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in PD. Parkinsonism and Related Disorders, 2016, 22, e32.	2.2	1
228	Editorial: RNA Diseases in Humans—From Fundamental Research to Therapeutic Applications. Frontiers in Molecular Biosciences, 2019, 6, 53.	3.5	1
229	Meclozine has a potential effects on short stature and foramen magnum stenosis in transgenic mice with achondroplasia. Bone Abstracts, 0, , .	0.0	1
230	Decoding Abnormal Splicing Code in Human Diseases. Journal of Investigative Genomics, 2015, 2, .	0.2	1
231	Meclozine Attenuates the MARK Pathway in Mammalian Chondrocytes and Ameliorates FGF2-Induced Bone Hyperossification in Larval Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 694018.	3.7	1
232	Molecular insights into acetylcholine receptor structure and function revealed by mutations causing congenital myasthenic syndromes. Advances in Molecular and Cell Biology, 2004, 32, 95-119.	0.1	0
233	Viral vector-medicated expression of human collagen Q in cultured cells. Chemico-Biological Interactions, 2008, 175, 346-348.	4.0	0
234	RNA Pathologies in Neurological Disorders. Advances in Neurobiology, 2011, , 399-415.	1.8	0

#	Article	IF	CITATIONS
235	P.12.10 Exome sequencing analysis reveals a mutation of Kir3.4 in a patient with Andersen–Tawil syndrome. Neuromuscular Disorders, 2013, 23, 808.	0.6	0
236	S1 Nuclease Analysis and Direct Sequencing of Deleted Mitochondrial DNA in Myopathic Patients: Role of Directly Repeated Sequences in Deletion. , 1990, , 441-449.		0
237	Mitochondrial DNA Disease: Phylogeny and Expression. , 1991, , 247-272.		0
238	Splicing Aberrations in Congenital Myasthenic Syndromes. Journal of Investigative Genomics, 2015, 2, .	0.2	0
239	Reply to the Letter to the Editor "The Microbiota in Parkinson's Disease: Ranking the Risk of Heart Disease― Annals of Nutrition and Metabolism, 2022, , 1-2.	1.9	0
240	Meclozine ameliorates skeletal muscle pathology and increases muscle forces in mdx mice. Biochemical and Biophysical Research Communications, 2022, 592, 87-92.	2.1	0
241	Gene symbol: CHRNE. Disease: Endplate acetylcholine receptor deficiency. Human Genetics, 2005, 117, 301.	3.8	0