Jean-Baptiste Michel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3127609/publications.pdf

Version: 2024-02-01

		34105	42399
131	9,396	52	92
papers	citations	h-index	g-index
133	133	133	11179
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Periodontitis and cardiovascular diseases: Consensus report. Journal of Clinical Periodontology, 2020, 47, 268-288.	4.9	636
2	The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovascular Research, 2012, 95, 194-204.	3.8	573
3	Abdominal aortic aneurysms. Nature Reviews Disease Primers, 2018, 4, 34.	30.5	312
4	Intraplaque haemorrhages as the trigger of plaque vulnerability. European Heart Journal, 2011, 32, 1977-1985.	2.2	298
5	Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovascular Research, 2011, 90, 18-27.	3.8	294
6	Involvement of the Mural Thrombus as a Site of Protease Release and Activation in Human Aortic Aneurysms. American Journal of Pathology, 2002, 161, 1701-1710.	3.8	285
7	Thrombus Neutrophil Extracellular Traps Content Impair tPA-Induced Thrombolysis in Acute Ischemic Stroke. Stroke, 2018, 49, 754-757.	2.0	232
8	Lymphoid neogenesis in chronic rejection: Evidence for a local humoral alloimmune response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14723-14728.	7.1	227
9	Identification by a Differential Proteomic Approach of Heat Shock Protein 27 as a Potential Marker of Atherosclerosis. Circulation, 2004, 110, 2216-2219.	1.6	214
10	Roles of PAD4 and NETosis in Experimental Atherosclerosis and Arterial Injury. Circulation Research, 2018, 123, 33-42.	4.5	205
11	Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovascular Research, 2013, 99, 232-241.	3.8	195
12	Topological Determinants and Consequences of Adventitial Responses to Arterial Wall Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1259-1268.	2.4	176
13	Drug interactions modulate the potential for evolution of resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14918-14923.	7.1	176
14	Syndromic and nonâ€syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. Journal of Pathology, 2009, 218, 131-142.	4.5	162
15	Alteplase Reduces Downstream Microvascular Thrombosis and Improves the Benefit of Large Artery Recanalization in Stroke. Stroke, 2015, 46, 3241-3248.	2.0	153
16	Renewal of Mural Thrombus Releases Plasma Markers and Is Involved in Aortic Abdominal Aneurysm Evolution. American Journal of Pathology, 2006, 168, 1022-1030.	3.8	148
17	Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment. Journal of Leukocyte Biology, 2007, 82, 1420-1429.	3.3	137
18	Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis, 2014, 234, 311-319.	0.8	135

#	Article	IF	Citations
19	Control of the T Follicular Helper–Germinal Center B-Cell Axis by CD8 ⁺ Regulatory T Cells Limits Atherosclerosis and Tertiary Lymphoid Organ Development. Circulation, 2015, 131, 560-570.	1.6	130
20	Translational Relevance and Recent Advances of Animal Models of Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 401-410.	2.4	130
21	Porphyromonas gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats. PLoS ONE, 2011, 6, e18679.	2.5	125
22	Role of Leukocyte Elastase in Preventing Cellular Re-Colonization of the Mural Thrombus. American Journal of Pathology, 2004, 164, 2077-2087.	3.8	121
23	From genetics to response to injury: vascular smooth muscle cells in aneurysms and dissections of the ascending aorta. Cardiovascular Research, 2018, 114, 578-589.	3.8	114
24	Radiolabeled Fucoidan as a P-Selectin Targeting Agent for In Vivo Imaging of Platelet-Rich Thrombus and Endothelial Activation. Journal of Nuclear Medicine, 2011, 52, 1433-1440.	5.0	109
25	Mediators of neutrophil recruitment in human abdominal aortic aneurysms. Cardiovascular Research, 2009, 82, 532-541.	3.8	104
26	¹⁸ F-FDG Uptake Assessed by PET/CT in Abdominal Aortic Aneurysms Is Associated with Cellular and Molecular Alterations Prefacing Wall Deterioration and Rupture. Journal of Nuclear Medicine, 2013, 54, 1740-1747.	5.0	104
27	Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophilderived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB Journal, 2009, 23, 1376-1383.	0.5	100
28	Pericellular plasmin induces smooth muscle cell anoikis. FASEB Journal, 2003, 17, 1301-1303.	0.5	97
29	Exacerbation of Thromboinflammation by Hyperglycemia Precipitates Cerebral Infarct Growth and Hemorrhagic Transformation. Stroke, 2017, 48, 1932-1940.	2.0	96
30	Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovascular Research, 2011, 89, 446-456.	3.8	95
31	Protease Nexin-1 Inhibits Plasminogen Activation-induced Apoptosis of Adherent Cells. Journal of Biological Chemistry, 2004, 279, 10346-10356.	3.4	90
32	Biological Significance of Decreased HSP27 in Human Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 1337-1343.	2.4	89
33	Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology. Blood, 2012, 119, 2452-2457.	1.4	88
34	HDL antielastase activity prevents smooth muscle cell anoikis, a potential new antiatherogenic property. FASEB Journal, 2009, 23, 3129-3139.	0.5	86
35	Neuroimmune cardiovascular interfaces control atherosclerosis. Nature, 2022, 605, 152-159.	27.8	86
36	Acute ischemic stroke thrombi have an outer shell that impairs fibrinolysis. Neurology, 2019, 93, e1686-e1698.	1.1	84

#	Article	IF	CITATIONS
37	Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine, 2015, 10, 73-87.	3.3	80
38	Identification of Peroxiredoxin-1 as a Novel Biomarker of Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 935-943.	2.4	75
39	Proteomic Analysis of Polymorphonuclear Neutrophils Identifies Catalase as a Novel Biomarker of Abdominal Aortic Aneurysm: Potential Implication of Oxidative Stress in Abdominal Aortic Aneurysm Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 3011-3019.	2.4	71
40	Using the tabulated diffusion flamelet model ADF-PCM to simulate a lifted methane–air jet flame. Combustion and Flame, 2009, 156, 1318-1331.	5.2	69
41	On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load. SAE International Journal of Engines, 0, 7, 1808-1823.	0.4	69
42	Effect of blocking platelet activation with AZD6140 on development of abdominal aortic aneurysm in a rat aneurysmal model. Journal of Vascular Surgery, 2009, 49, 719-727.	1.1	68
43	Peripheral Artery Disease Is Associated With a High CD163/TWEAK Plasma Ratio. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1253-1262.	2.4	67
44	Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation. Atherosclerosis, 2014, 236, 448-455.	0.8	66
45	Diagnostic and therapeutic strategies for small abdominal aortic aneurysms. Nature Reviews Cardiology, 2011, 8, 338-347.	13.7	63
46	The translational science of Marfan syndrome. Heart, 2011, 97, 1206-1214.	2.9	62
47	Angiogenesis and remodelling in human thoracic aortic aneurysms. Cardiovascular Research, 2014, 104, 147-159.	3.8	60
48	Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 2008, 152, 80-99.	5.2	59
49	On the use of a tabulation approach to model auto-ignition during flame propagation in SI engines. Applied Energy, 2011, 88, 4968-4979.	10.1	59
50	Lymphoid neogenesis in chronic rejection: the murderer is in the house. Current Opinion in Immunology, 2006, 18, 576-579.	5.5	58
51	^{99m} Tc-Annexin-V Functional Imaging of Luminal Thrombus Activity in Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2153-2159.	2.4	58
52	Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: Detoxifying mechanisms and potential therapeutic options. Thrombosis and Haemostasis, 2012, 108, 435-442.	3.4	58
53	MR Imaging of Iron Phagocytosis in Intraluminal Thrombi of Abdominal Aortic Aneurysms in Humans. Radiology, 2010, 254, 973-981.	7.3	56
54	Pharmacological Potentiation of Natriuretic Peptide Limits Polymorphonuclear Neutrophil-Vascular Cell Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1824-1831.	2.4	55

#	Article	IF	CITATIONS
55	Low plasma levels of HSP70 in patients with carotid atherosclerosis are associated with increased levels of proteolytic markers of neutrophil activation. Atherosclerosis, 2007, 194, 334-341.	0.8	54
56	Increased plasma levels of NGAL, a marker of neutrophil activation, in patients with abdominal aortic aneurysm. Atherosclerosis, 2012, 220, 552-556.	0.8	52
57	Proteomic Analysis of Intraluminal Thrombus Highlights Complement Activation in Human Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2013-2020.	2.4	50
58	Relationship of Iron Deposition toÂCalcium Deposition in HumanÂAorticÂValve Leaflets. Journal of the American College of Cardiology, 2019, 73, 1043-1054.	2.8	47
59	Deciphering the Stromal and Hematopoietic Cell Network of the Adventitia from Non-Aneurysmal and Aneurysmal Human Aorta. PLoS ONE, 2014, 9, e89983.	2.5	47
60	Early Atheroma-Derived Agonists of Peroxisome Proliferator–Activated Receptor-γ Trigger Intramedial Angiogenesis in a Smooth Muscle Cell–Dependent Manner. Circulation Research, 2011, 109, 1003-1014.	4.5	46
61	In vitro and in vivo evidence for the role of elastase shedding of CD163 in human atherothrombosis. European Heart Journal, 2012, 33, 252-263.	2.2	46
62	The Serpin Protease-Nexin 1 Is Present in Rat Aortic Smooth Muscle Cells and Is Upregulated inl-NAME Hypertensive Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 142-147.	2.4	45
63	Sectional soot model coupled to tabulated chemistry for Diesel RANS simulations. Combustion and Flame, 2015, 162, 3081-3099.	5.2	44
64	Macrophages and Platelets Are the Major Source of Protease Nexin-1 in Human Atherosclerotic Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1844-1850.	2.4	43
65	From intraplaque haemorrhages to plaque vulnerability. Journal of Cardiovascular Medicine, 2012, 13, 628-634.	1.5	42
66	Initiation of Angiogenesis in Atherosclerosis: Smooth Muscle Cells as Mediators of the Angiogenic Response to Atheroma Formation. Trends in Cardiovascular Medicine, 2011, 21, 183-187.	4.9	41
67	Free DNA precipitates calcium phosphate apatite crystals in the arterial wall inÂvivo. Atherosclerosis, 2017, 259, 60-67.	0.8	40
68	APOA1 oxidation is associated to dysfunctional high-density lipoproteins in human abdominal aortic aneurysm. EBioMedicine, 2019, 43, 43-53.	6.1	40
69	Red Blood Cells and Hemoglobin in Human Atherosclerosis and Related Arterial Diseases. International Journal of Molecular Sciences, 2020, 21, 6756.	4.1	39
70	Plasma Concentration of Heat Shock Protein 27 and Risk of Cardiovascular Disease: A Prospective, Nested Case-Control Study. Clinical Chemistry, 2008, 54, 139-146.	3.2	38
71	Impaired high-density lipoprotein anti-oxidant capacity in human abdominal aortic aneurysm. Cardiovascular Research, 2013, 100, 307-315.	3.8	38
72	Modifications of Chromatin Dynamics Control Smad2 Pathway Activation in Aneurysmal Smooth Muscle Cells. Circulation Research, 2013, 113, 881-890.	4.5	38

#	Article	IF	CITATIONS
73	Fibrinolytic activity is associated with presence of cystic medial degeneration in aneurysms of the ascending aorta. Histopathology, 2010, 57, 917-932.	2.9	36
74	Contrasting Outcomes of Atheroma Evolution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1389-1392.	2.4	35
75	From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovascular Research, 2021, 117, 2016-2029.	3.8	35
76	Immaturity of microvessels in haemorrhagic plaques is associated with proteolytic degradation of angiogenic factors. Cardiovascular Research, 2010, 85, 184-193.	3.8	34
77	A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre-ignition in piston engines. Proceedings of the Combustion Institute, 2011, 33, 3105-3114.	3.9	34
78	Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovascular Research, 2018, 114, 1656-1666.	3.8	34
79	(Tissue PET) Vascular metabolic imaging and peripheral plasma biomarkers in the evolution of chronic aortic dissections. European Heart Journal Cardiovascular Imaging, 2015, 16, 626-633.	1.2	33
80	Topology of protease activities reflects atherothrombotic plaque complexity. Atherosclerosis, 2007, 191, 1-10.	0.8	32
81	Hemorphin 7 Reflects Hemoglobin Proteolysis in Abdominal Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 269-275.	2.4	32
82	Smad2-Dependent Protease Nexin-1 Overexpression Differentiates Chronic Aneurysms From Acute Dissections of Human Ascending Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2222-2232.	2.4	32
83	Metabolites Secreted by Human Atherothrombotic Aneurysms Revealed through a Metabolomic Approach. Journal of Proteome Research, 2011, 10, 1374-1382.	3.7	31
84	From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm. Thrombosis and Haemostasis, 2014, 112, 87-95.	3.4	30
85	Protease nexin-1: A cellular serpin down-regulated by thrombin in rat aortic smooth muscle cells. Journal of Cellular Physiology, 2004, 201, 138-145.	4.1	29
86	Plasmin induces apoptosis of aortic valvular myofibroblasts. Journal of Pathology, 2010, 221, 37-48.	4.5	28
87	Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms. Journal of Vascular Surgery, 2012, 56, 765-773.	1.1	27
88	NO Relaxation Approach (NORA) to predict thermal NO in combustion chambers. Combustion and Flame, 2011, 158, 1480-1490.	5.2	26
89	Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23, 111-122.	2.4	25
90	The Oral Cavity and Age: A Site of Chronic Inflammation?. PLoS ONE, 2007, 2, e1351.	2.5	24

#	Article	IF	Citations
91	On the formulation of species reaction rates in the context of multi-species CFD codes using complex chemistry tabulation techniques. Combustion and Flame, 2010, 157, 701-714.	5.2	23
92	Comparison of Differing Formulations of the PCM Model by their Application to the Simulation of an Auto-igniting H 2/air Jet. Flow, Turbulence and Combustion, 2009, 83, 33-60.	2.6	22
93	Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm. International Journal of Cardiology, 2015, 201, 66-78.	1.7	22
94	The VWF/LRP4/ $\hat{l}\pm V\hat{l}^2$ 3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovascular Research, 2022, 118, 622-637.	3.8	22
95	Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. European Radiology, 2016, 26, 2378-2386.	4.5	21
96	A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine, 2019, 46, 274-289.	6.1	21
97	Can Periodontitis Influence the Progression of Abdominal Aortic Aneurysm? A Systematic Review. Angiology, 2019, 70, 479-491.	1.8	21
98	Predominant Role of Host Proteases in Myocardial Damage Associated with Infectious Endocarditis Induced by Enterococcus faecalis in a Rat Model. Infection and Immunity, 2013, 81, 1721-1729.	2.2	20
99	Effects of Glutaraldehyde on Experimental Arterial Iso- and Allografts in Rats. Journal of Surgical Research, 1993, 54, 61-69.	1.6	19
100	Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray. International Journal of Engine Research, 2018, 19, 434-448.	2.3	19
101	Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiological Reviews, 2020, 100, 1779-1837.	28.8	19
102	A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 2014, 15, 346-369.	2.3	18
103	Exploring antibody-dependent adaptive immunity against aortic extracellular matrix components in experimental aortic aneurysms. Journal of Vascular Surgery, 2018, 68, 60S-71S.e3.	1.1	18
104	Elastase inhibitor AZD9668 treatment prevented progression of experimental abdominal aortic aneurysms. Journal of Vascular Surgery, 2016, 63, 486-492.e1.	1.1	16
105	Autologous mesenchymal stem cell endografting in experimental cerebrovascular aneurysms. Neuroradiology, 2013, 55, 741-749.	2.2	14
106	Proteomics in atherothrombosis: a future perspective. Expert Review of Proteomics, 2007, 4, 249-260.	3.0	13
107	Oral microbiota and atherothrombotic carotid plaque vulnerability in periodontitis patients. A crossâ€sectional study. Journal of Periodontal Research, 2021, 56, 339-350.	2.7	13
108	Large Eddy Simulations of a Small-Scale Flameless Combustor by Means of Diluted Homogeneous Reactors. Flow, Turbulence and Combustion, 2014, 93, 305-347.	2.6	12

#	Article	IF	CITATIONS
109	Amino-Fucoidan as a Vector for rtPA-Induced Fibrinolysis in Experimental Thrombotic Events. Thrombosis and Haemostasis, 2018, 118, 042-053.	3.4	12
110	lgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine, 2020, 9, 67.	2.4	12
111	Labelâ€free proteomic analysis of red blood cell membrane fractions from abdominal aortic aneurysm patients. Proteomics - Clinical Applications, 2014, 8, 626-630.	1.6	11
112	Peristrut microhemorrhages: a possible cause of in-stent neoatherosclerosis?. Cardiovascular Pathology, 2017, 26, 30-38.	1.6	11
113	Internal Bleeding. JACC Basic To Translational Science, 2018, 3, 481-484.	4.1	11
114	High-density lipoprotein therapy inhibits Porphyromonas gingivalis-induced abdominal aortic aneurysm progression. Thrombosis and Haemostasis, 2016, 115, 789-799.	3.4	10
115	Regulation and impact of cardiac lymphangiogenesis in pressure-overload-induced heart failure. Cardiovascular Research, 2023, 119, 492-505.	3.8	10
116	Thrombi and Neutrophils. Circulation Research, 2015, 116, 1107-1108.	4.5	9
117	Clearance of plasmin–PN-1 complexes by vascular smooth muscle cells in human aneurysm of the ascending aorta. Cardiovascular Pathology, 2018, 32, 15-25.	1.6	9
118	New Insights Into Aortic Diseases. Aorta, 2013, 1, 23-39.	0.5	7
119	An Innovative Approach Combining Adaptive Mesh Refinement, the ECFM3Z Turbulent Combustion Model, and the TKI Tabulated Auto-Ignition Model for Diesel Engine CFD Simulations. , 2016, , .		7
120	Evaluation of Different Tabulation Techniques Dedicated to the Prediction of the Combustion and Pollutants Emissions on a Diesel Engine with 3D CFD., 2013,,.		6
121	A Two-Dimensional Tabulated Flamelet Combustion Model for Furnace Applications. Flow, Turbulence and Combustion, 2016, 97, 631-662.	2.6	6
122	Neurologic Complications of Infective Endocarditis. Critical Care Medicine, 2019, 47, e685-e692.	0.9	6
123	Innovative application of nested PCR for detection of <i>Porphyromonas gingivalis</i> in human highly calcified atherothrombotic plaques. Journal of Oral Microbiology, 2020, 12, 1742523.	2.7	6
124	Persistence of Intraluminal Thrombus Makes Saccular Aneurysm More Biologically Active than Fusiform in an Experimental Rat Model. Journal of Vascular Research, 2020, 57, 164-176.	1.4	6
125	Regarding "A multilayer stent in the aorta may not seal the aneurysm, thereby leading to rupture― Journal of Vascular Surgery, 2013, 57, 605.	1.1	5
126	A simplified CMC approach based on tabulated reaction rates applied to a lifted methane–air jet flame. Proceedings of the Combustion Institute, 2015, 35, 1393-1399.	3.9	5

#	ARTICLE	IF	CITATIONS
127	Evaluation of different turbulent combustion models based on tabulated chemistry using DNS of heterogeneous mixtures. Combustion Theory and Modelling, 2017, 21, 440-465.	1.9	5
128	Role of Biomechanical Stress in the Pathology of the Aorta. , 2019, , 163-180.		2
129	Evaluation of Different Turbulent Combustion Models Based on Tabulated Chemistry Using DNS of Heterogeneous Mixtures Under Multi-injection Diesel Engine-Relevant Conditions. Flow, Turbulence and Combustion, 2021, 107, 479-515.	2.6	1
130	Reply. Journal of Vascular Surgery, 2015, 62, 1386-1387.	1.1	0
131	Vascular smooth muscle cell dysfunction: role in arterial stiffening and cardiovascular disease. , 2022, , 341-357.		0