Shu-ao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3126138/publications.pdf

Version: 2024-02-01

223 papers 13,092 citations

59 h-index 29157 104 g-index

234 all docs 234 docs citations

times ranked

234

6843 citing authors

#	Article	IF	CITATIONS
1	Umbellate Distortions of the Uranyl Coordination Environment Result in a Stable and Porous Polycatenated Framework That Can Effectively Remove Cesium from Aqueous Solutions. Journal of the American Chemical Society, 2015, 137, 6144-6147.	13.7	392
2	Identifying the Recognition Site for Selective Trapping of ⁹⁹ TcO ₄ [–] in a Hydrolytically Stable and Radiation Resistant Cationic Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 14873-14876.	13.7	386
3	Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nature Communications, 2017, 8, 15369.	12.8	366
4	Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal–Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation. Environmental Science &	10.0	331
5	Efficient and Selective Uptake of TcO ₄ ^{â€"} by a Cationic Metalâ€"Organic Framework Material with Open Ag ⁺ Sites. Environmental Science & Envi	10.0	323
6	A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nature Communications, 2017, 8, 1354.	12.8	296
7	Three Mechanisms in One Material: Uranium Capture by a Polyoxometalate–Organic Framework through Combined Complexation, Chemical Reduction, and Photocatalytic Reduction. Angewandte Chemie - International Edition, 2019, 58, 16110-16114.	13.8	288
8	Ultrafast and Efficient Extraction of Uranium from Seawater Using an Amidoxime Appended Metal–Organic Framework. ACS Applied Materials & Los Applied Materials & 2017, 9, 32446-32451.	8.0	260
9	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	8.2	256
10	NDTBâ€1: A Supertetrahedral Cationic Framework That Removes TcO ₄ ^{â^'} from Solution. Angewandte Chemie - International Edition, 2010, 49, 1057-1060.	13.8	238
11	99TcO4â^' remediation by a cationic polymeric network. Nature Communications, 2018, 9, 3007.	12.8	234
12	Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16448-16457.	8.0	223
13	Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks. Applied Catalysis B: Environmental, 2019, 254, 47-54.	20.2	222
14	Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard–Soft Donor Combined Strategy. Inorganic Chemistry, 2014, 53, 1712-1720.	4.0	219
15	Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie - International Edition, 2017, 56, 7500-7504.	13.8	214
16	Emergence of Uranium as a Distinct Metal Center for Building Intrinsic Xâ€ray Scintillators. Angewandte Chemie - International Edition, 2018, 57, 7883-7887.	13.8	198
17	Multimodal Luminescent Yb ³⁺ /Er ³⁺ /Bi ³⁺ â€Doped Perovskite Single Crystals for Xâ€ray Detection and Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2004506.	21.0	187
18	Exceptional Perrhenate/Pertechnetate Uptake and Subsequent Immobilization by a Low-Dimensional Cationic Coordination Polymer: Overcoming the Hofmeister Bias Selectivity. Environmental Science and Technology Letters, 2017, 4, 316-322.	8.7	181

#	Article	IF	Citations
19	Unique Proton Transportation Pathway in a Robust Inorganic Coordination Polymer Leading to Intrinsically High and Sustainable Anhydrous Proton Conductivity. Journal of the American Chemical Society, 2018, 140, 6146-6155.	13.7	181
20	Mechanism unravelling for ultrafast and selective ⁹⁹ TcO ₄ ^{â°'} uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chemical Science, 2019, 10, 4293-4305.	7.4	181
21	Successful Decontamination of ⁹⁹ TcO ₄ ^{â°³} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie - International Edition, 2019, 58, 4968-4972.	13.8	177
22	Fabrication of a phosphorylated graphene oxide–chitosan composite for highly effective and selective capture of U(<scp>vi</scp>). Environmental Science: Nano, 2017, 4, 1876-1886.	4.3	161
23	Selectivity, Kinetics, and Efficiency of Reversible Anion Exchange with TcO ₄ ^{â^'} in a Supertetrahedral Cationic Framework. Advanced Functional Materials, 2012, 22, 2241-2250.	14.9	141
24	Highly Inâ€Plane Anisotropic 2D GeAs ₂ for Polarizationâ€Sensitive Photodetection. Advanced Materials, 2018, 30, e1804541.	21.0	140
25	Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15364-15368.	8.0	136
26	Rare earth separations by selective borate crystallization. Nature Communications, 2017, 8, 14438.	12.8	125
27	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organic Framework and Examination of Anion Binding Motifs. Chemistry of Materials, 2018, 30, 1277-1284.	6.7	125
28	99TcO4â^' removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nature Communications, 2020, 11, 5571.	12.8	124
29	Employing an Unsaturated Th ⁴⁺ Site in a Porous Thorium–Organic Framework for Kr/Xe Uptake and Separation. Angewandte Chemie - International Edition, 2018, 57, 5783-5787.	13.8	122
30	Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nature Communications, 2019, 10, 1646.	12.8	122
31	Distinctive Two-Step Intercalation of Sr2+ into a Coordination Polymer with Record High 90Sr Uptake Capabilities. CheM, 2019, 5, 977-994.	11.7	119
32	A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo. Nature Communications, 2019, 10, 2570.	12.8	107
33	Separation and Remediation of ⁹⁹ TcO ₄ ^{â€"} from Aqueous Solutions. Chemistry of Materials, 2019, 31, 3863-3877.	6.7	106
34	Metal–organic frameworks for radionuclide sequestration from aqueous solution: a brief overview and outlook. Dalton Transactions, 2017, 46, 16381-16386.	3.3	104
35	Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials. Chemistry of Materials, 2010, 22, 2155-2163.	6.7	103
36	A supramolecular lanthanide separation approach based on multivalent cooperative enhancement of metal ion selectivity. Nature Communications, 2018, 9, 547.	12.8	102

3

#	Article	IF	CITATIONS
37	Synthesis of phytic acid-decorated titanate nanotubes for high efficient and high selective removal of U(VI). Chemical Engineering Journal, 2017, 322, 353-365.	12.7	101
38	Task-Specific Tailored Cationic Polymeric Network with High Base-Resistance for Unprecedented ⁹⁹ TcO ₄ [–] Cleanup from Alkaline Nuclear Waste. ACS Central Science, 2021, 7, 1441-1450.	11.3	101
39	Selenium Sequestration in a Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. Environmental Science & Exaft Science 2017, 51, 8606-8615.	10.0	98
40	Unique Four-Electron Metal-to-Cage Charge Transfer of Th to a C ₈₂ Fullerene Cage: Complete Structural Characterization of Th@ <i>C</i> _{3<i>v</i>} (8)-C ₈₂ . Journal of the American Chemical Society, 2017, 139, 5110-5116.	13.7	97
41	Differentiating between Trivalent Lanthanides and Actinides. Journal of the American Chemical Society, 2012, 134, 10682-10692.	13.7	96
42	Rational Synthesis of Novel Phosphorylated Chitosan-Carboxymethyl Cellulose Composite for Highly Effective Decontamination of U(VI). ACS Sustainable Chemistry and Engineering, 2019, 7, 5393-5403.	6.7	96
43	Ratiometric Monitoring of Thorium Contamination in Natural Water Using a Dual-Emission Luminescent Europium Organic Framework. Environmental Science & Environmental Science & 2019, 53, 332-341.	10.0	90
44	Electron Beam Irradiation as a General Approach for the Rapid Synthesis of Covalent Organic Frameworks under Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 9169-9174.	13.7	90
45	Three-Dimensional Polycatenation of a Uranium-Based Metal–Organic Cage: Structural Complexity and Radiation Detection. Journal of the American Chemical Society, 2020, 142, 16218-16222.	13.7	89
46	First Cationic Uranyl–Organic Framework with Anion-Exchange Capabilities. Inorganic Chemistry, 2016, 55, 6358-6360.	4.0	88
47	Direct Radiation Detection by a Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 8030-8034.	13.7	85
48	Recent progress in actinide borate chemistry. Chemical Communications, 2011, 47, 10874.	4.1	81
49	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	4.1	81
50	Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin. Radiochimica Acta, 2018, 106, 581-591.	1.2	74
51	Syntheses, Structures, and Spectroscopic Properties of Plutonium and Americium Phosphites and the Redetermination of the Ionic Radii of Pu(III) and Am(III). Inorganic Chemistry, 2012, 51, 8419-8424.	4.0	72
52	Cu Nanoclusters/FeN ₄ Amorphous Composites with Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries. ACS Applied Materials & Dual Active Sites in N-Doped Graphene for High-Performance Zn—Air Batteries.	8.0	71
53	Efficient and selective sensing of Cu2+ and UO22+ by a europium metal-organic framework. Talanta, 2019, 196, 515-522.	5.5	69
54	Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage. Angewandte Chemie - International Edition, 2010, 49, 1263-1266.	13.8	67

#	Article	IF	Citations
55	Rational design of a cationic polymer network towards record high uptake of 99TcO4â^' in nuclear waste. Science China Chemistry, 2021, 64, 1251-1260.	8.2	67
56	Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nature Chemistry, 2019, 11, 248-253.	13.6	66
57	A hydrolytically stable uranyl organic framework for highly sensitive and selective detection of Fe ³⁺ in aqueous media. Dalton Transactions, 2018, 47, 649-653.	3.3	64
58	Dinitrogen Cleavage by a Heterometallic Cluster Featuring Multiple Uranium–Rhodium Bonds. Journal of the American Chemical Society, 2020, 142, 15004-15011.	13.7	64
59	Double dative bond between divalent carbon(0) and uranium. Nature Communications, 2018, 9, 4997.	12.8	63
60	A diuranium carbide cluster stabilized inside a C80 fullerene cage. Nature Communications, 2018, 9, 2753.	12.8	63
61	Persistent Superprotonic Conductivity in the Order of 10â^1 S·cmâ^1 Achieved Through Thermally Induced Structural Transformation of a Uranyl Coordination Polymer. CCS Chemistry, 2019, 1, 197-206.	7.8	63
62	Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on Flexible Xâ€ray Detectors. Angewandte Chemie - International Edition, 2020, 59, 11856-11860.	13.8	60
63	Nano-MOF ⁺ Technique for Efficient Uranyl Remediation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 21619-21626.	8.0	59
64	Color-tunable X-ray scintillation based on a series of isotypic lanthanide–organic frameworks. Chemical Communications, 2020, 56, 233-236.	4.1	58
65	Bonding Changes in Plutonium(III) and Americium(III) Borates. Angewandte Chemie - International Edition, 2011, 50, 8891-8894.	13.8	57
66	Emergence of a Radicalâ€Stabilizing Metal–Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie - International Edition, 2020, 59, 15209-15214.	13.8	56
67	Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nature Communications, 2021, 12, 2798.	12.8	55
68	How are Centrosymmetric and Noncentrosymmetric Structures Achieved in Uranyl Borates?. Inorganic Chemistry, 2010, 49, 2948-2953.	4.0	53
69	Role of Anions and Reaction Conditions in the Preparation of Uranium(VI), Neptunium(VI), and Plutonium(VI) Borates. Inorganic Chemistry, 2011, 50, 2527-2533.	4.0	53
70	Precise recognition of palladium through interlaminar chelation in a covalent organic framework. CheM, 2022, 8, 1442-1459.	11.7	53
71	Superprotonic conduction through one-dimensional ordered alkali metal ion chains in a lanthanide-organic framework. Chemical Communications, 2018, 54, 4429-4432.	4.1	52
72	Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4844-4850.	8.0	52

#	Article	IF	CITATIONS
73	Structureâ^'Property Relationships in Lithium, Silver, and Cesium Uranyl Borates. Chemistry of Materials, 2010, 22, 5983-5991.	6.7	50
74	Further insights into intermediate- and mixed-valency in neptunium oxoanion compounds: structure and absorption spectroscopy of K2[(NpO2)3B10O16(OH)2(NO3)2]. Chemical Communications, 2010, 46, 3955.	4.1	50
75	Technetiumâ€99 MASâ€NMR Spectroscopy of a Cationic Framework Material that Traps TcO ₄ ^{â^'} Ions. Angewandte Chemie - International Edition, 2010, 49, 5975-5977.	13.8	49
76	Design and synthesis of a chiral uranium-based microporous metal organic framework with high SHG efficiency and sequestration potential for low-valent actinides. Dalton Transactions, 2015, 44, 18810-18814.	3. 3	49
77	Unassisted Uranyl Photoreduction and Separation in a Donor–Acceptor Covalent Organic Framework. Chemistry of Materials, 2022, 34, 2771-2778.	6.7	49
78	Cerium(IV), Neptunium(IV), and Plutonium(IV) 1,2-Phenylenediphosphonates: Correlations and Differences between Early Transuranium Elements and Their Proposed Surrogates. Inorganic Chemistry, 2010, 49, 10074-10080.	4.0	48
79	Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes. Inorganic Chemistry, 2010, 49, 6690-6696.	4.0	48
80	Functionalization of Borate Networks by the Incorporation of Fluoride: Syntheses, Crystal Structures, and Nonlinear Optical Properties of Novel Actinide Fluoroborates. Chemistry of Materials, 2011, 23, 2931-2939.	6.7	48
81	Surprising Coordination for Plutonium in the First Plutonium(III) Borate. Inorganic Chemistry, 2011, 50, 2079-2081.	4.0	47
82	Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions. Inorganic Chemistry, 2016, 55, 12508-12511.	4.0	47
83	Deviation Between the Chemistry of Ce(IV) and Pu(IV) and Routes to Ordered and Disordered Heterobimetallic 4f/5f and 5f/5f Phosphonates. Inorganic Chemistry, 2011, 50, 4842-4850.	4.0	46
84	Curium(III) Borate Shows Coordination Environments of Both Plutonium(III) and Americium(III) Borates. Angewandte Chemie - International Edition, 2012, 51, 1869-1872.	13.8	46
85	A Porous Aromatic Framework Functionalized with Luminescent Iridium(III) Organometallic Complexes for Turn-On Sensing of ⁹⁹ TcO ₄ [–] . ACS Applied Materials & Interfaces, 2020, 12, 15288-15297.	8.0	46
86	Thermoplastic Membranes Incorporating Semiconductive Metal–Organic Frameworks: An Advance on Flexible Xâ€ray Detectors. Angewandte Chemie, 2020, 132, 11954-11958.	2.0	46
87	Heavy metal spatial variability and historical changes in the Yangtze River estuary and North Jiangsu tidal flat. Marine Pollution Bulletin, 2015, 98, 115-129.	5.0	43
88	Probing the Influence of Phosphonate Bonding Modes to Uranium(VI) on Structural Topology and Stability: A Complementary Experimental and Computational Investigation. Inorganic Chemistry, 2015, 54, 3864-3874.	4.0	43
89	Periodic Trends in Lanthanide and Actinide Phosphonates: Discontinuity between Plutonium and Americium. Inorganic Chemistry, 2012, 51, 6906-6915.	4.0	42
90	Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie, 2017, 129, 7608-7612.	2.0	42

#	Article	IF	Citations
91	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie - International Edition, 2021, 60, 473-479.	13.8	42
92	Periodic Trends in Hexanuclear Actinide Clusters. Inorganic Chemistry, 2012, 51, 4088-4093.	4.0	40
93	3,4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions. Environmental Science: Nano, 2019, 6, 1457-1465.	4.3	40
94	Diuranium(IV) Carbide Cluster U ₂ C ₂ Stabilized Inside Fullerene Cages. Journal of the American Chemical Society, 2019, 141, 20249-20260.	13.7	40
95	Stabilization of Plutonium(V) Within a Crown Ether Inclusion Complex. CCS Chemistry, 2020, 2, 425-431.	7.8	39
96	Centrosymmetric and chiral porous thorium organic frameworks exhibiting uncommon thorium coordination environments. Dalton Transactions, 2015, 44, 20867-20873.	3.3	38
97	Boronic Acid Flux Synthesis and Crystal Growth of Uranium and Neptunium Boronates and Borates: A Low-Temperature Route to the First Neptunium(V) Borate. Inorganic Chemistry, 2010, 49, 9755-9757.	4.0	37
98	Tuning Mixedâ€Valent Eu ²⁺ /Eu ³⁺ in Strontium Formate Frameworks for Multichannel Photoluminescence. Chemistry - A European Journal, 2016, 22, 11170-11175.	3.3	37
99	Successful Decontamination of ⁹⁹ TcO ₄ ^{â^'} in Groundwater at Legacy Nuclear Sites by a Cationic Metalâ€Organic Framework with Hydrophobic Pockets. Angewandte Chemie, 2019, 131, 5022-5026.	2.0	37
100	Efficient sequestration of radioactive 99TcO4- by a rare 3-fold interlocking cationic metal-organic framework: A combined batch experiments, pair distribution function, and crystallographic investigation. Chemical Engineering Journal, 2022, 427, 130942.	12.7	37
101	Boosting the Optoelectronic Performance by Regulating Exciton Behaviors in a Porous Semiconductive Metal–Organic Framework. Journal of the American Chemical Society, 2022, 144, 2189-2196.	13.7	37
102	(UO ₂) ₂ [UO ₄ (trz) ₂](OH) ₂ : A U(VI) Coordination Intermediate between a Tetraoxido Core and a Uranyl Ion with Cation–Cation Interactions. Inorganic Chemistry, 2012, 51, 7185-7191.	4.0	36
103	Intrinsic Semiconducting Behavior in a Large Mixedâ€Valent Uranium(V/VI) Cluster. Angewandte Chemie - International Edition, 2021, 60, 9886-9890.	13.8	36
104	A Mixedâ€Valent Uranium Phosphonate Framework Containing U IV , U V , and U VI. Chemistry - A European Journal, 2016, 22, 11954-11957.	3.3	35
105	Phase transition triggered aggregation-induced emission in a photoluminescent uranyl–organic framework. Chemical Communications, 2018, 54, 627-630.	4.1	35
106	Identification of a uranium–rhodium triple bond in a heterometallic cluster. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17654-17658.	7.1	35
107	Reaction: Semiconducting MOFs Offer New Strategy for Uranium Extraction from Seawater. CheM, 2021, 7, 279-280.	11.7	35
108	Characterization of a strong covalent Th3+–Th3+ bond inside an Ih(7)-C80 fullerene cage. Nature Communications, 2021, 12, 2372.	12.8	34

#	Article	IF	Citations
109	Comparisons of Pu(IV) and Ce(IV) Diphosphonates. Inorganic Chemistry, 2010, 49, 3337-3342.	4.0	33
110	Surprising coordination for low-valent actinides resembling uranyl(<scp>vi</scp>) in thorium(<scp>iv</scp>) organic hybrid layered and framework structures based on a graphene-like (6,3) sheet topology. Dalton Transactions, 2016, 45, 918-921.	3.3	33
111	Tunable 4f/5f Bimodal Emission in Europium-Incorporated Uranyl Coordination Polymers. Inorganic Chemistry, 2018, 57, 575-582.	4.0	33
112	Ultra-Efficient Americium/Lanthanide Separation through Oxidation State Control. Journal of the American Chemical Society, 2022, 144, 6383-6389.	13.7	33
113	High Structural Complexity of Potassium Uranyl Borates Derived from High-Temperature/High-Pressure Reactions. Inorganic Chemistry, 2013, 52, 5110-5118.	4.0	32
114	Emergence of Uranium as a Distinct Metal Center for Building Intrinsic Xâ€ray Scintillators. Angewandte Chemie, 2018, 130, 8009-8013.	2.0	32
115	Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization. Inorganic Chemistry, 2018, 57, 1880-1887.	4.0	32
116	Three Mechanisms in One Material: Uranium Capture by a Polyoxometalate–Organic Framework through Combined Complexation, Chemical Reduction, and Photocatalytic Reduction. Angewandte Chemie, 2019, 131, 16256-16260.	2.0	32
117	Determination of trace uranyl ion by thermoresponsive porphyrin–terminated polymeric sensor. Talanta, 2015, 131, 198-204.	5.5	30
118	Significant Proton Conductivity Enhancement through Rapid Water-Induced Structural Transformation from a Cationic Framework to a Water-Rich Neutral Chain. Crystal Growth and Design, 2017, 17, 3847-3853.	3.0	30
119	Preparation of thermochromic selenidostannates in deep eutectic solvents. Chemical Communications, 2018, 54, 4806-4809.	4.1	30
120	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie - International Edition, 2021, 60, 21250-21255.	13.8	30
121	Employing an Unsaturated Th ⁴⁺ Site in a Porous Thorium–Organic Framework for Kr/Xe Uptake and Separation. Angewandte Chemie, 2018, 130, 5885-5889.	2.0	29
122	<i>In Vivo</i> Uranium Decorporation by a Tailor-Made Hexadentate Ligand. Journal of the American Chemical Society, 2022, 144, 11054-11058.	13.7	28
123	A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations. Dalton Transactions, 2015, 44, 18158-18166.	3.3	27
124	Construction of heterometallic clusters with multiple uranium–metal bonds by using dianionic nitrogen–phosphorus ligands. Chemical Science, 2020, 11, 7585-7592.	7.4	27
125	Complex clover cross-sectioned nanotubules exist in the structure of the first uranium borate phosphate. Chemical Communications, 2012, 48, 3479.	4.1	25
126	Photo-exfoliation of a highly photo-responsive two-dimensional metal–organic framework. Chemical Communications, 2019, 55, 11715-11718.	4.1	24

#	Article	IF	Citations
127	Atypical temperature-dependence of symmetry transformation observed in a uranyl phosphonate. Dalton Transactions, 2016, 45, 9031-9035.	3.3	23
128	Macroscopic and spectral exploration on the removal performance of pristine and phytic acid-decorated titanate nanotubes towards Eu(III). Journal of Molecular Liquids, 2018, 258, 66-73.	4.9	22
129	Introducing Uranium as the Activator toward Highly Stable Narrow-Band Green Emitters with Near-Unity Quantum Efficiency. Chemistry of Materials, 2019, 31, 9684-9690.	6.7	22
130	A uranyl based coordination polymer showing response to low-dosage ionizing radiations down to 10â° 5 Gy. Science China Chemistry, 2020, 63, 1608-1612.	8.2	22
131	Electron Beam Irradiationâ€Induced Formation of Defectâ€Rich Zeolites under Ambient Condition within Minutes. Angewandte Chemie - International Edition, 2021, 60, 14858-14863.	13.8	22
132	K(NpO ₂) ₃ (H ₂ O)Cl ₄ : A Channel Structure Assembled by Two- and Three-Center Cationâ€"Cation Interactions of Neptunyl Cations. Inorganic Chemistry, 2011, 50, 4692-4694.	4.0	21
133	Facile Routes to Th ^{IV} , U ^{IV} , and Np ^{IV} Phosphites and Phosphates. European Journal of Inorganic Chemistry, 2011, 2011, 3749-3754.	2.0	21
134	New Neptunium(V) Borates That Exhibit the Alexandrite Effect. Inorganic Chemistry, 2012, 51, 7-9.	4.0	21
135	Systematic Investigation of the <i>in Situ</i> Reduction Process from U(VI) to U(IV) in a Phosphonate System under Mild Solvothermal Conditions. Inorganic Chemistry, 2017, 56, 6952-6964.	4.0	21
136	3,2-Hydroxypyridinone-Grafted Chitosan Oligosaccharide Nanoparticles as Efficient Decorporation Agents for Simultaneous Removal of Uranium and Radiation-Induced Reactive Oxygen Species <i>in Vivo</i> . Bioconjugate Chemistry, 2018, 29, 3896-3905.	3.6	21
137	A neptunium(<scp>v</scp>)-mediated interwoven transuranium-rotaxane network incorporating a mechanically interlocked [<i>c</i> 2]daisy chain unit. Chemical Communications, 2018, 54, 8645-8648.	4.1	21
138	Emerging investigator series: significantly enhanced uptake of Eu ³⁺ on a nanoporous zeolitic mineral in the presence of UO ₂ ²⁺ : insights into the impact of cation–cation interaction on the geochemical behavior of lanthanides and actinides. Environmental Science: Nano, 2019, 6, 736-746.	4.3	21
139	A unique uranyl framework containing uranyl pentamers as secondary building units: synthesis, structure, and spectroscopic properties. Dalton Transactions, 2020, 49, 3676-3679.	3. 3	21
140	A Photoconductive Xâ€ray Detector with a High Figure of Merit Based on an Openâ€Framework Chalcogenide Semiconductor. Angewandte Chemie - International Edition, 2020, 59, 18605-18610.	13.8	21
141	Influence of Synthetic Conditions on Chemistry and Structural Properties of Alkaline Earth Uranyl Borates. Crystal Growth and Design, 2016, 16, 5923-5931.	3.0	20
142	Mild Periodic Acid Flux and Hydrothermal Methods for the Synthesis of Crystalline f-Element-Bearing lodate Compounds. Inorganic Chemistry, 2017, 56, 13041-13050.	4.0	20
143	Competing Crystallization between Lanthanide and Actinide in Acidic Solution Leading to Their Efficient Separation. Chinese Journal of Chemistry, 2019, 37, 53-57.	4.9	20
144	Boosting Proton Conductivity in Highly Robust 3D Inorganic Cationic Extended Frameworks through Ion Exchange with Dihydrogen Phosphate Anions. Chemistry - A European Journal, 2015, 21, 17591-17595.	3.3	19

#	Article	IF	CITATIONS
145	Hydrolytically Stable Nanoporous Thorium Mixed Phosphite and Pyrophosphate Framework Generated from Redox-Active Ionothermal Reactions. Inorganic Chemistry, 2016, 55, 3721-3723.	4.0	19
146	Monitoring Ultraviolet Radiation Dosage Based on a Luminescent Lanthanide Metal–Organic Framework. Inorganic Chemistry, 2018, 57, 8714-8717.	4.0	19
147	Unveiling the Uncommon Fluorescent Recognition Mechanism towards Pertechnetate Using a Cationic Metal–Organic Framework Bearing Nâ€Heterocyclic AIE Molecules. Chemistry - A European Journal, 2021, 27, 5632-5637.	3.3	19
148	Highly Distorted Uranyl Ion Coordination and One/Two-Dimensional Structural Relationship in the Ba2[UO2(TO4)2] (T = P, As) System: An Experimental and Computational Study. Inorganic Chemistry, 2014, 53, 7650-7660.	4.0	18
149	Reticular Chemistry of Uranyl Phosphonates: Sterically Hindered Phosphonate Ligand Method is Significant for Constructing Zeroâ€Dimensional Secondary Building Units. Chemistry - A European Journal, 2019, 25, 12567-12575.	3.3	18
150	Efficient separation between trivalent americium and lanthanides enabled by a phenanthroline-based polymeric organic framework. Chinese Chemical Letters, 2022, 33, 3429-3434.	9.0	18
151	Efficient Xe/Kr Separation Based on a Lanthanide–Organic Framework with One-Dimensional Local Positively Charged Rhomboid Channels. ACS Applied Materials & Diterfaces, 2022, 14, 22233-22241.	8.0	18
152	Toward Equatorial Planarity about Uranyl: Synthesis and Structure of Tridentate Nitrogen-Donor {UO ₂ } ²⁺ Complexes. Inorganic Chemistry, 2014, 53, 2506-2515.	4.0	17
153	3-Hydroxy-2-Pyrrolidinone as a Potential Bidentate Ligand for <i>in Vivo</i> Chelation of Uranyl with Low Cytotoxicity and Moderate Decorporation Efficacy: A Solution Thermodynamics, Structural Chemistry, and <i>in Vivo</i> Uranyl Removal Survey. Inorganic Chemistry, 2019, 58, 3349-3354.	4.0	17
154	⁹⁹ TcO ₄ [–] Separation through Selective Crystallization Assisted by Polydentate Benzene-Aminoguanidinium Ligands. Inorganic Chemistry, 2021, 60, 6463-6471.	4.0	17
155	Atom-precise incorporation of platinum into ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 4911-4919.	10.3	17
156	Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework. Inorganic Chemistry, 2015, 54, 10023-10029.	4.0	16
157	Insertion of Trivalent Lanthanides into Uranyl Vanadate Layers and Frameworks. Inorganic Chemistry, 2015, 54, 8449-8455.	4.0	16
158	An ingenious one-dimensional zirconium phosphonate with efficient strontium exchange capability and moderate proton conductivity. Dalton Transactions, 2018, 47, 5161-5165.	3.3	16
159	In Situ Reduction from Uranyl Ion into a Tetravalent Uranium Trimer and Hexamer Featuring Ion-Exchange Properties and the Alexandrite Effect. Inorganic Chemistry, 2018, 57, 6753-6761.	4.0	16
160	Size-dependent selective crystallization using an inorganic mixed-oxoanion system for lanthanide separation. Dalton Transactions, 2019, 48, 12808-12811.	3.3	16
161	Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives. Radiochimica Acta, 2019, 107, 951-964.	1.2	16
162	[Ln 6 O 8] Clusterâ€Encapsulating Polyplumbites as New Polyoxometalate Members and Record Inorganic Anionâ€Exchange Materials for ReO 4 â° Sequestration. Advanced Science, 2019, 6, 1900381.	11.2	16

#	Article	IF	CITATIONS
163	Gleaming Uranium: An Emerging Emitter for Building Xâ€ray Scintillators. Chemistry - A European Journal, 2020, 26, 1900-1905.	3.3	16
164	Evaluation of materials for iodine and technetium immobilization through sorption and redox-driven processes. Science of the Total Environment, 2020, 716, 136167.	8.0	16
165	Efficient capture of Sr ²⁺ from acidic aqueous solution by an 18-crown-6-ether-based metal organic framework. CrystEngComm, 2021, 23, 3349-3355.	2.6	16
166	A Multifunctional Porous Uranyl Phosphonate Framework for Cyclic Utilization: Salvages, Uranyl Leaking Prevention, and Fluorescent Sensing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14380-14387.	8.0	16
167	Photochemical Synthesis of Transition Metal-Stabilized Uranium(VI) Nitride Complexes. Nature Communications, 2022, 13, .	12.8	16
168	Divergent Structural Chemistry of Uranyl Borates Obtained from Solid State and Hydrothermal Conditions. Crystal Growth and Design, 2017, 17, 5898-5907.	3.0	15
169	Synthesis and Study of the First Zeolitic Uranium Borate. Crystal Growth and Design, 2018, 18, 498-505.	3.0	15
170	The first actinide polyiodate: a complex multifunctional compound with promising X-ray luminescence properties and proton conductivity. Chemical Communications, 2021, 57, 496-499.	4.1	15
171	Efficient Sr-90 removal from highly alkaline solution by an ultrastable crystalline zirconium phosphonate. Chemical Communications, 2021, 57, 8452-8455.	4.1	15
172	Selective hydroboration of terminal alkynes catalyzed by heterometallic clusters with uranium–metal triple bonds. CheM, 2022, 8, 1361-1375.	11.7	15
173	Substitutional Disorder of SeO ₃ ^{2–} /IO ₃ [–] in the Crystalline Solid Matrix: Insights into the Fate of Radionuclides ⁷⁹ Se and ¹²⁹ I in the Environment. Inorganic Chemistry, 2017, 56, 3702-3708.	4.0	14
174	A uranyl phosphonate framework with a temperature-induced order–disorder transition and temperature-correlated photoluminescence. CrystEngComm, 2018, 20, 3153-3157.	2.6	14
175	Emergence of a Radicalâ€Stabilizing Metal–Organic Framework as a Radioâ€photoluminescence Dosimeter. Angewandte Chemie, 2020, 132, 15321-15326.	2.0	14
176	Structural and thermodynamic stability of uranyl–deferiprone complexes and the removal efficacy of U(<scp>vi</scp>) at the cellular level. Dalton Transactions, 2018, 47, 8764-8770.	3.3	13
177	Assembly of porphyrin-based uranium organic frameworks with (3,4)-connected <i>pto</i> and <i>tbo</i> topologies. Dalton Transactions, 2019, 48, 1595-1598.	3.3	13
178	Inorganic X-ray Scintillators Based on a Previously Unnoticed but Intrinsically Advantageous Metal Center. Inorganic Chemistry, 2019, 58, 2807-2812.	4.0	13
179	A hydrolytically stable europium–organic framework for the selective detection of radioactive Th ⁴⁺ in aqueous solution. CrystEngComm, 2019, 21, 3471-3477.	2.6	13
180	Elucidation of Tetraboric Acid with a New Borate Fundamental Building Block in a Chiral Uranyl Fluoroborate. Inorganic Chemistry, 2012, 51, 11211-11213.	4.0	12

#	Article	IF	Citations
181	Structural and spectroscopic characterization of two new layered uranyl(VI) p-xylenediphosphonate compounds synthesized via ionothermal method. Inorganica Chimica Acta, 2015, 435, 131-136.	2.4	12
182	Insights into the Structural Chemistry of Anhydrous and Hydrous Hexavalent Uranium and Neptunium Dinitrato, Trinitrato, and Tetranitrato Complexes. Inorganic Chemistry, 2020, 59, 7204-7215.	4.0	12
183	Evaluation of Chemical Bonding in Actinyl(VI/V) Oxo-Crown-Ether Complexes for Actinide Series from Uranium to Curium. Inorganic Chemistry, 2020, 59, 11953-11961.	4.0	11
184	Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 4561-4565.	4.0	10
185	Chromate separation by selective crystallization. Chinese Chemical Letters, 2020, 31, 1974-1977.	9.0	9
186	Fabrication of a Wide Color Gamut pc-WLED Surpassing 107% NTSC Based on a Robust Luminescent Uranyl Phosphate. Chemistry of Materials, 2021, 33, 6329-6337.	6.7	9
187	Hinokitiol, an Advanced Bidentate Ligand for Uranyl Decorporation. Inorganic Chemistry, 2022, 61, 3886-3892.	4.0	9
188	The development of molecular and nano actinide decorporation agents. Chinese Chemical Letters, 2022, 33, 3395-3404.	9.0	9
189	Incorporation of iodate into uranyl borates and its implication for the immobilization of ¹²⁹ I in nuclear waste repositories. Radiochimica Acta, 2011, 99, 573-580.	1.2	8
190	Insights into the new Th (IV) sulfate fluoride complex: Synthesis, crystal structures, and temperature dependent spectroscopic properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 149, 295-303.	3.9	8
191	Two-Dimensional Inorganic Cationic Network of Thorium Iodate Chloride with Unique Halogen–Halogen Bonds. Inorganic Chemistry, 2016, 55, 8570-8575.	4.0	8
192	An Ultrastable Heterobimetallic Uranium(IV)/Vanadium(III) Solid Compound Protected by a Redox-Active Phosphite Ligand: Crystal Structure, Oxidative Dissolution, and First-Principles Simulation. Inorganic Chemistry, 2018, 57, 903-907.	4.0	8
193	Uptake and separation of Xe and Kr by a zeolitic imidazolate framework with a desirable pore window. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 1275-1281.	1.5	8
194	Uranyl Phosphonates with Multiple Uranyl Coordination Geometries and Low Temperature Phase Transition. Chinese Journal of Chemistry, 2021, 39, 597-604.	4.9	8
195	Developing a Unique Hydrogen-Bond Network in a Uranyl Coordination Framework for Fuel Cell Applications. Inorganic Chemistry, 2022, 61, 8036-8042.	4.0	8
196	Potassium uranyl borate 3D framework compound resulted from temperature directed hydroborate condensation: structure, spectroscopy, and dissolution studies. Dalton Transactions, 2016, 45, 15464-15472.	3.3	7
197	Th(H2O)(IVO3)2[IVII0.6V1.76O7(OH)]: A Mixed-Valent lodine Compound Containing Periodate Stabilized by Crystallographically Compatible Lattice Sites. Inorganic Chemistry, 2016, 55, 12101-12104.	4.0	7
198	Twoâ€Dimensional Uranyl Borates: From Conventional to Extreme Synthetic Conditions. European Journal of Inorganic Chemistry, 2020, 2020, 407-416.	2.0	7

#	Article	IF	CITATIONS
199	Ratiometric recognition of humidity by a europium-organic framework equipped with quasi-open metal site. Science China Chemistry, 2021, 64, 1723-1729.	8.2	7
200	Interstitial Incorporation of Plutonium into a Low-Dimensional Potassium Borate. Environmental Science & Environmental Science	10.0	6
201	Single-crystal-to-single-crystal desolvation in a Ti ₃₂ nanoring cluster. CrystEngComm, 2018, 20, 7062-7065.	2.6	6
202	One-dimensional chain structures of hexanuclear uranium(<scp>iv</scp>) clusters bridged by formate ligands. RSC Advances, 2018, 8, 34947-34953.	3.6	6
203	Extreme condition high temperature and high pressure studies of the K–U–Mo–O system. Dalton Transactions, 2020, 49, 15843-15853.	3.3	5
204	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie, 2021, 133, 477-483.	2.0	5
205	A new low temperature route to uranyl borates with structural variations. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, .	0.8	4
206	Intrinsic Semiconducting Behavior in a Large Mixedâ€Valent Uranium(V/VI) Cluster. Angewandte Chemie, 2021, 133, 9974-9978.	2.0	4
207	Achieving and Stabilizing Uranyl Bending via Physical Pressure. Inorganic Chemistry, 2021, 60, 8419-8422.	4.0	3
208	ssDNA functionalized nanodiamonds for uranium decorporation. Chinese Chemical Letters, 2022, 33, 3570-3572.	9.0	3
209	lonothermal synthesis of a highly crystalline zirconium phosphate proton conductor. Dalton Transactions, 2022, 51, 8182-8185.	3.3	3
210	Unusual Heterometallic Cation-Cation Interactions in Uranyl Zinc Germanates. European Journal of Inorganic Chemistry, 2020, 2020, 2182-2185.	2.0	2
211	Electron Beam Irradiationâ€Induced Formation of Defectâ€Rich Zeolites under Ambient Condition within Minutes. Angewandte Chemie, 2021, 133, 14984-14989.	2.0	2
212	Perrhenate recognition within a superphane cavity. CheM, 2022, 8, 1543-1545.	11.7	2
213	Decorporation of uranyl in kidneys using an engineered nanocomposite. Environmental Science: Nano, 2022, 9, 2704-2712.	4.3	2
214	Innentitelbild: Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage (Angew. Chem. 7/2010). Angewandte Chemie, 2010, 122, 1190-1190.	2.0	1
215	Inside Cover: Neptunium Diverges Sharply from Uranium and Plutonium in Crystalline Borate Matrixes: Insights into the Complex Behavior of the Early Actinides Relevant to Nuclear Waste Storage (Angew.) Tj ETQq1 1	l 0.3.8 431	4 1 gBT /Over
216	Innenrücktitelbild: Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators (Angew. Chem. 26/2018). Angewandte Chemie, 2018, 130, 8031-8031.	2.0	1

#	Article	IF	CITATIONS
217	Radionuclide sequestration by metal-organic frameworks. , 2019, , 355-382.		1
218	A Photoconductive Xâ€ray Detector with a High Figure of Merit Based on an Openâ€Framework Chalcogenide Semiconductor. Angewandte Chemie, 2020, 132, 18764-18769.	2.0	1
219	Multivalent cooperativity induced by self-assembly for f-element separation. Communications Chemistry, 2021, 4, .	4.5	1
220	Water-stable metal–organic framework–based nanomaterials for removal of heavy metal ions and radionuclides. , 2022, , 49-126.		1
221	Frontispiece: Gleaming Uranium: An Emerging Emitter for Building Xâ€ray Scintillators. Chemistry - A European Journal, 2020, 26, .	3.3	0
222	Deuterated Covalent Organic Frameworks with Significantly Enhanced Luminescence. Angewandte Chemie, 2021, 133, 21420-21425.	2.0	0
223	Professor Zhifang Chai: Scientific Contributions and Achievements. Chinese Chemical Letters, 2022, , .	9.0	0