
Meital Reches

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/312382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Adhesion Mechanism of Hydroxyapatite-Binding Peptide. Langmuir, 2022, 38, 968-978.	3.5	12
2	Urinary Stent Development and Evaluation Models: In Vitro, Ex Vivo and In Vivo—A European Network of Multidisciplinary Research to Improve Urinary Stents (ENIUS) Initiative. Polymers, 2022, 14, 1641.	4.5	2
3	Detection of Au Nanoparticles Using Peptide-Modified Si ₃ N ₄ Nanopores. ACS Applied Nano Materials, 2021, 4, 1000-1008.	5.0	13
4	An Individual Amino Acid as a Possible Prebiotic Catalyst. ChemSystemsChem, 2021, 3, e2100005.	2.6	1
5	Non-covalently embedded oxytocin in alkanethiol monolayer as Zn2+ selective biosensor. Scientific Reports, 2021, 11, 7051.	3.3	3
6	An Individual Amino Acid as a Possible Prebiotic Catalyst. ChemSystemsChem, 2021, 3, e2100018.	2.6	0
7	Structural preferences of an anti-fouling peptide: From single chain to small molecular assemblies. Biophysical Chemistry, 2021, 272, 106555.	2.8	2
8	Interactions of Microorganisms with Lipid Langmuir Layers. Langmuir, 2021, 37, 10340-10347.	3.5	0
9	Evidence for new enantiospecific interaction force in chiral biomolecules. CheM, 2021, 7, 2787-2799.	11.7	17
10	Antiviral Polymers Based on <i>N</i> -Halamine Polyurea. Biomacromolecules, 2021, 22, 4357-4364.	5.4	13
11	Antiviral Activity of Peptide-Based Assemblies. ACS Applied Materials & Interfaces, 2021, 13, 48469-48477.	8.0	8
12	A Novel Copper-Binding Peptide That Self-Assembles Into a Transparent Antibacterial and Antiviral Coating. Frontiers in Bioengineering and Biotechnology, 2021, 9, 736679.	4.1	4
13	Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111365.	5.0	15
14	Fundamentals and Applications of FluidFM Technology in Single ell Studies. Advanced Materials Interfaces, 2020, 7, 2001115.	3.7	19
15	Fast and synchronized fluctuations of cortical actin negatively correlate with nucleoli liquid–liquid phase separation in T cells. European Biophysics Journal, 2020, 49, 409-423.	2.2	4
16	Nucleobase morpholino Î ² amino acids as molecular chimeras for the preparation of photoluminescent materials from ribonucleosides. Scientific Reports, 2020, 10, 19331.	3.3	15
17	Biomaterials: Fundamentals and Applications of FluidFM Technology in Single ell Studies (Adv. Mater.) Tj ET	Qq1_1_0.78	84314 rgBT /C
18	Antifouling and antimicrobial coatings based on sol–gel films. Journal of Sol-Gel Science and	24	8

Technology, 2020, 95, 609-619.

#	Article	IF	CITATIONS
19	Amphiphilic Peptide with Dual Functionality Resists Biofouling. Langmuir, 2020, 36, 4201-4206.	3.5	18
20	Durable, Stable, and Functional Nanopores Decorated by Self-Assembled Dipeptides. ACS Applied Materials & Interfaces, 2020, 12, 14563-14568.	8.0	19
21	A peptide coating preventing the attachment of <i>Porphyromonas gingivalis</i> on the surfaces of dental implants. Journal of Periodontal Research, 2020, 55, 503-510.	2.7	12
22	Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Science Advances, 2020, 6, eaax2861.	10.3	24
23	AFMâ€Based Spinâ€Exchange Microscopy Using Chiral Molecules. Advanced Materials, 2019, 31, e1904206.	21.0	45
24	Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Frontiers in Microbiology, 2019, 10, 1405.	3.5	34
25	The effect of endâ€group substitution on surface selfâ€assembly of peptides. Journal of Peptide Science, 2019, 25, e3212.	1.4	4
26	ForSDAT: an automated platform for analyzing force spectroscopy measurements. Analytical Methods, 2019, 11, 4709-4718.	2.7	12
27	Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. Nanoscale, 2019, 11, 8752-8759.	5.6	22
28	Multiplex optical detection and quantification of DNA fragments by metallo-peptide assemblies. Scientific Reports, 2019, 9, 8789.	3.3	0
29	Evaluating Efficacy of Antimicrobial and Antifouling Materials for Urinary Tract Medical Devices: Challenges and Recommendations. Macromolecular Bioscience, 2019, 19, e1800384.	4.1	66
30	Electrochemical Triggered Dissolution of Hydroxyapatite/Doxorubicin Nanocarriers. ACS Applied Bio Materials, 2019, 2, 1956-1966.	4.6	3
31	T Cell Activation through Isolated Tight Contacts. Cell Reports, 2019, 29, 3506-3521.e6.	6.4	27
32	Electrically Responsive, Nanopatterned Surfaces for Triggered Delivery of Biologically Active Molecules into Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 1201-1208.	8.0	10
33	Nanoscale Topography–Rigidity Correlation at the Surface of T Cells. ACS Nano, 2019, 13, 346-356.	14.6	5
34	Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation. Nature Communications, 2018, 9, 732.	12.8	84
35	Miscibility, interactions and antimicrobial activity of poly(ε-caprolactone)/chloramphenicol blends. European Polymer Journal, 2018, 102, 30-37.	5.4	9
36	The role of hydrophobic, aromatic and electrostatic interactions between amino acid residues and a titanium dioxide surface. Physical Chemistry Chemical Physics, 2018, 20, 29811-29816.	2.8	15

#	Article	IF	CITATIONS
37	Self-assembly of a metallo-peptide into a drug delivery system using a "switch on―displacement strategy. Journal of Materials Chemistry B, 2018, 6, 8228-8237.	5.8	16
38	Resisting Bacteria and Attracting Cells: Spontaneous Formation of a Bifunctional Peptide-Based Coating by On-Surface Assembly Approach. ACS Biomaterials Science and Engineering, 2018, 4, 4051-4061.	5.2	23
39	The effects of fluid composition and shear conditions on bacterial adhesion to an antifouling peptide-coated surface. MRS Communications, 2018, 8, 938-946.	1.8	12
40	Peptideâ€Based Approaches to Fight Biofouling. Advanced Materials Interfaces, 2018, 5, 1800073.	3.7	94
41	Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Scientific Reports, 2018, 8, 9350.	3.3	23
42	Rational Design of Amphiphilic Peptides and Its Effect on Antifouling Performance. Biomacromolecules, 2018, 19, 3620-3627.	5.4	15
43	Tailorâ€Made Functional Peptide Selfâ€Assembling Nanostructures. Advanced Materials, 2018, 30, e1707083.	21.0	104
44	Quickly Manufactured, Drug Eluting, Calcium Phosphate Composite Coating. ChemistrySelect, 2017, 2, 753-758.	1.5	5
45	Peptide fibrils as monomer storage of the covalent HIVâ€1 integrase inhibitor. Journal of Peptide Science, 2017, 23, 117-121.	1.4	2
46	Synthesis, coating, and drug-release of hydroxyapatite nanoparticles loaded with antibiotics. Journal of Materials Chemistry B, 2017, 5, 7819-7830.	5.8	87
47	Self-assembly of an amphipathic ααβ-tripeptide into cationic spherical particles for intracellular delivery. Organic and Biomolecular Chemistry, 2017, 15, 6773-6779.	2.8	34
48	Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 26503-26509.	8.0	33
49	Nano-patterned polyelectrolyte multilayers assembled using block copolymer templates: The combined effect of ionic strength and nano-confinement. Polymer, 2017, 126, 56-64.	3.8	6
50	Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy. Journal of Visualized Experiments, 2017, , .	0.3	2
51	Covalent Inhibition of HIVâ€1 Integrase by <i>N</i> â€5uccinimidyl Peptides. ChemMedChem, 2016, 11, 1987-1994.	3.2	5
52	Electrochemical Cycling Induced Surface Segregation of AuPt Nanoparticles in HClO4and H2SO4. Journal of the Electrochemical Society, 2016, 163, F752-F760.	2.9	5
53	Revealing the role of catechol moieties in the interactions between peptides and inorganic surfaces. Nanoscale, 2016, 8, 15309-15316.	5.6	42
54	Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Current Opinion in Biotechnology, 2016, 39, 48-55.	6.6	116

#	Article	IF	CITATIONS
55	Single-stranded DNA detection by solvent-induced assemblies of a metallo-peptide-based complex. Nanoscale, 2016, 8, 9527-9536.	5.6	10
56	Inversion of Supramolecular Chirality by Sonication-Induced Organogelation. Scientific Reports, 2015, 5, 16365.	3.3	36
57	Review insights into the interactions of amino acids and peptides with inorganic materials using single molecule force spectroscopy. Biopolymers, 2015, 104, 480-494.	2.4	15
58	Elucidating the mechanism of interaction between peptides and inorganic surfaces. Physical Chemistry Chemical Physics, 2015, 17, 15305-15315.	2.8	39
59	Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015, 11, 44-58.	0.8	29
60	Dipeptide Nanotubes Containing Unnatural Fluorine-Substituted β ^{2,3} -Diarylamino Acid and <scp>l</scp> -Alanine as Candidates for Biomedical Applications. Organic Letters, 2015, 17, 4468-4471.	4.6	50
61	Sticky tubes and magnetic hydrogels co-assembled by a short peptide and melanin-like nanoparticles. Chemical Communications, 2015, 51, 5432-5435.	4.1	33
62	Co-assembly of aromatic dipeptides into spherical structures that are similar in morphology to red and white blood cells. Journal of Materials Chemistry B, 2014, 2, 2583.	5.8	30
63	Optimization of Liganded Polyethylenimine Polyethylene Glycol Vector for Nucleic Acid Delivery. Bioconjugate Chemistry, 2014, 25, 1644-1654.	3.6	10
64	Self-assembly of a tripeptide into a functional coating that resists fouling. Chemical Communications, 2014, 50, 11154-11157.	4.1	68
65	Selfâ€assembly of azide containing dipeptides. Journal of Peptide Science, 2014, 20, 479-486.	1.4	5
66	Probing the Interaction of Individual Amino Acids with Inorganic Surfaces Using Atomic Force Spectroscopy. Langmuir, 2013, 29, 10102-10109.	3.5	48
67	Formation of Ordered Biomolecular Structures by the Self-assembly of Short Peptides. Journal of Visualized Experiments, 2013, , e50946.	0.3	4
68	Thread Based Devices for Low-Cost Diagnostics. Methods in Molecular Biology, 2013, 949, 197-205.	0.9	3
69	Analog modeling of Worm-Like Chain molecules using macroscopic beads-on-a-string. Physical Chemistry Chemical Physics, 2012, 14, 9041.	2.8	15
70	Coassembly of Aromatic Dipeptides into Biomolecular Necklaces. ACS Nano, 2012, 6, 9559-9566.	14.6	82
71	Thread as a Matrix for Biomedical Assays. ACS Applied Materials & amp; Interfaces, 2010, 2, 1722-1728.	8.0	224
72	Folding of electrostatically charged beads-on-a-string as an experimental realization of a theoretical model in polymer science. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17644-17649.	7.1	26

#	Article	IF	CITATIONS
73	Phase separation of two-dimensional Coulombic crystals of mesoscale dipolar particles from mesoscale polarizable "solvent― Applied Physics Letters, 2009, 94, .	3.3	16
74	Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophysical Journal, 2009, 96, 5020-5029.	0.5	212
75	Phase separation of 2D meso-scale Coulombic crystals from meso-scale polarizable "solvent― Soft Matter, 2009, 5, 1188-1191.	2.7	22
76	Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Analytical Chemistry, 2008, 80, 3387-3392.	6.5	535
77	Physical-organic studies of ionic electrets: Mechanism of formation, molecular design, and applications. , 2008, , .		0
78	Biological and Chemical Decoration of Peptide Nanostructures via Biotin–Avidin Interactions. Journal of Nanoscience and Nanotechnology, 2007, 7, 2239-2245.	0.9	40
79	Integrating peptide nanotubes in micro-fabrication processes. Journal of Micromechanics and Microengineering, 2007, 17, 2360-2365.	2.6	45
80	Bioinspired Design of Nanocages by Self-Assembling Triskelion Peptide Elements. Angewandte Chemie - International Edition, 2007, 46, 2002-2004.	13.8	133
81	Inside Cover: Bioinspired Design of Nanocages by Self-Assembling Triskelion Peptide Elements (Angew.) Tj ETQq1	1 0.78431 13.8	L4 _o rgBT /Ove
82	Formation of Well-Organized Self-Assembled Films from Peptide Nanotubes. Advanced Materials, 2007, 19, 1485-1488.	21.0	78
83	Thermal and Chemical Stability of Diphenylalanine Peptide Nanotubes:  Implications for Nanotechnological Applications. Langmuir, 2006, 22, 1313-1320.	3.5	349
84	Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications. Physical Biology, 2006, 3, S10-S19.	1.8	182
85	Molecular Self-Assembly of Peptide Nanostructures: Mechanism of Association and Potential Uses. Current Nanoscience, 2006, 2, 105-111.	1.2	168
86	Controlled patterning of aligned self-assembled peptide nanotubes. Nature Nanotechnology, 2006, 1, 195-200.	31.5	529
87	Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide. Advanced Materials, 2006, 18, 1365-1370.	21.0	742
88	Energy landscape of amyloidogenic peptide oligomerization by parallel-tempering molecular dynamics simulation: Significant role of Asn ladder. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8174-8179.	7.1	109
89	The Preferred Conformation of the Tripeptide Ala-Phe-Ala in Water Is an Inverse γ-Turn: Implications for Protein Folding and Drug Designâ€. Biochemistry, 2005, 44, 14170-14178.	2.5	34
90	Novel Electrochemical Biosensing Platform Using Self-Assembled Peptide Nanotubes. Nano Letters, 2005, 5, 183-186.	9.1	289

#	Article	IF	CITATIONS
91	Self-assembly of peptide nanotubes and amyloid-like structures by charged-termini-capped diphenylalanine peptide analogues. Israel Journal of Chemistry, 2005, 45, 363-371.	2.3	201
92	Peptide Nanotube-Modified Electrodes for Enzymeâ^'Biosensor Applications. Analytical Chemistry, 2005, 77, 5155-5159.	6.5	252
93	Amyloidogenic hexapeptide fragment of medin: homology to functional islet amyloid polypeptide fragments. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2004, 11, 81-89.	3.0	74
94	Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides. Nano Letters, 2004, 4, 581-585.	9.1	401
95	Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes. Science, 2003, 300, 625-627.	12.6	2,321
96	Amyloid Fibril Formation by Pentapeptide and Tetrapeptide Fragments of Human Calcitonin. Journal of Biological Chemistry, 2002, 277, 35475-35480.	3.4	315
97	Fighting Bacteria: How Can We Prevent Hospital-Acquired Infections?. Frontiers for Young Minds, 0, 6,	0.8	1