
Suzanne Scarlata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/312267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IQGAP1 scaffolding links phosphoinositide kinases to cytoskeletal reorganization. Biophysical Journal, 2022, , .	0.5	3
2	Activation of $\hat{GI}\pm q$ sequesters specific transcripts into Ago2 particles. FASEB Journal, 2022, 36, .	0.5	0
3	Deformation of caveolae impacts global transcription and translation processes through relocalization of cavin-1. Journal of Biological Chemistry, 2022, , 102005.	3.4	4
4	Activation of $\hat{Gl}\pm q$ sequesters specific transcripts into Ago2 particles. Scientific Reports, 2022, 12, .	3.3	5
5	Stimulation of phospholipase Cβ1 by Cα _q promotes the assembly of stress granule proteins. Science Signaling, 2021, 14, eaav1012.	3.6	10
6	Stimulation of the Gαq/phospholipase Cβ1 signaling pathway returns differentiated cells to a stemâ€like state. FASEB Journal, 2020, 34, 12663-12676.	0.5	10
7	Gαq-mediated calcium dynamics and membrane tension modulate neurite plasticity. Molecular Biology of the Cell, 2020, 31, 683-694.	2.1	10
8	Re-track: Software to analyze the retraction and protrusion velocities of neurites, filopodia and other structures. Analytical Biochemistry, 2020, 596, 113626.	2.4	4
9	Regulation of bifunctional proteins in cells: Lessons from the phospholipase Cβ/G protein pathway. Protein Science, 2020, 29, 1258-1268.	7.6	7
10	The Gαq/phospholipase Cβ signaling system represses tau aggregation. Cellular Signalling, 2020, 71, 109620.	3.6	4
11	The role of phospholipase CÎ ² on the plasma membrane and in the cytosol: How modular domains enable novel functions. Advances in Biological Regulation, 2019, 73, 100636.	2.3	4
12	Mechanical Stretch Redefines Membrane Gαq–Calcium Signaling Complexes. Journal of Membrane Biology, 2019, 252, 307-315.	2.1	8
13	Stimulation of $\hat{Gl} \pm q$ Promotes Stress Granule Formation. FASEB Journal, 2019, 33, 477.11.	0.5	Ο
14	Phospholipase Cβ interacts with cytosolic partners to regulate cell proliferation. Advances in Biological Regulation, 2018, 67, 7-12.	2.3	9
15	Phospholipase Cb1 regulates proliferation of neuronal cells. FASEB Journal, 2018, 32, 2891-2898.	0.5	21
16	Super-resolution Visualization of Caveola Deformation in Response to Osmotic Stress. Journal of Biological Chemistry, 2017, 292, 3779-3788.	3.4	31
17	Dynamics of Various Phospholipase C-B Complexes. Biophysical Journal, 2017, 112, 89a-90a.	0.5	0
18	Regulation of the activity of the promoter of RNAâ€induced silencing, C3PO. Protein Science, 2017, 26, 1807-1818	7.6	12

#	Article	IF	CITATIONS
19	RNAâ€induced silencing attenuates G proteinâ€mediated calcium signals. FASEB Journal, 2016, 30, 1958-1967.	0.5	15
20	Watching Signaling in Action: Single Molecule Studies of a Reaction Circuit Involved in Chemotaxis. Biophysical Journal, 2016, 110, 1679-1680.	0.5	0
21	Phospholipase CÎ ² -TRAX Association Is Required for PC12 Cell Differentiation. Journal of Biological Chemistry, 2016, 291, 22970-22976.	3.4	20
22	HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding. Cell Host and Microbe, 2016, 19, 336-348.	11.0	21
23	Phospholipase Cβ connects G protein signaling with RNA interference. Advances in Biological Regulation, 2016, 61, 51-57.	2.3	16
24	The breast cancer susceptibility gene product (γ-synuclein) alters cell behavior through it interaction with phospholipase Cβ. Cellular Signalling, 2016, 28, 91-99.	3.6	6
25	Osmotic Stress Reduces Ca2+ Signals through Deformation of Caveolae. Journal of Biological Chemistry, 2015, 290, 16698-16707.	3.4	17
26	Development of a Universal RNA Beacon for Exogenous Gene Detection. Stem Cells Translational Medicine, 2015, 4, 476-482.	3.3	4
27	Reproducibility of Research in Biophysics. Biophysical Journal, 2015, 108, E1.	0.5	7
28	High pressure promotes alphaâ€synuclein aggregation in cultured neuronal cells. FEBS Letters, 2015, 589, 3309-3312.	2.8	7
29	Defining the Oligomerization State of \hat{I}^3 -Synuclein in Solution and in Cells. Biochemistry, 2014, 53, 293-299.	2.5	10
30	Hydrolysis Rates of Different Small Interfering RNAs (siRNAs) by the RNA Silencing Promoter Complex, C3PO, Determines Their Regulation by Phospholipase Cβ. Journal of Biological Chemistry, 2014, 289, 5134-5144.	3.4	17
31	Linking alpha-synuclein properties with oxidation: a hypothesis on a mechanism underling cellular aggregation. Journal of Bioenergetics and Biomembranes, 2014, 46, 93-98.	2.3	15
32	Decoding Information in Cell Shape. Cell, 2013, 154, 1356-1369.	28.9	151
33	Phospholipase CÎ ² Binds to C3PO and its Components that Orchestrates RNA Interference. Biophysical Journal, 2013, 104, 684a.	0.5	0
34	Discrepancy between fluorescence correlation spectroscopy and fluorescence recovery after photobleaching diffusion measurements of G-protein-coupled receptors. Analytical Biochemistry, 2013, 440, 40-48.	2.4	28
35	Role of phospholipase C-Î ² in RNA interference. Advances in Biological Regulation, 2013, 53, 319-330.	2.3	17
36	A Loss in Cellular Protein Partners Promotes α-Synuclein Aggregation in Cells Resulting from Oxidative Stress. Biochemistry, 2013, 52, 3913-3920.	2.5	15

#	Article	IF	CITATIONS
37	Nitric Oxide Stress uncovers pM b2â€adrenergic mediated dilation to isoproterenol mimicked by preventing clathrin endosome formation FASEB Journal, 2013, 27, 924.4.	0.5	0
38	Phospholipase Cβ1 is Linked to RNA interference of Specific Genes through Translinâ€Associated Factor X. FASEB Journal, 2013, 27, 1018.3.	0.5	0
39	Gamma Synuclein Forms Tertramers that can be Disrupted by Phospholipase C. Biophysical Journal, 2012, 102, 243a.	0.5	1
40	A Role for G-Proteins in Directing G-Protein-Coupled Receptor–Caveolae Localization. Biochemistry, 2012, 51, 9513-9523.	2.5	28
41	Phospholipase Cβ1 is linked to RNA interference of specific genes through translinâ€associated factor X. FASEB Journal, 2012, 26, 4903-4913.	0.5	30
42	γ-Synuclein Interacts with Phospholipase Cβ2 to Modulate G Protein Activation. PLoS ONE, 2012, 7, e41067.	2.5	8
43	α-synuclein increases the cellular level of phospholipase Cβ1. Cellular Signalling, 2012, 24, 1109-1114.	3.6	18
44	Modulation of Ca2+ Activity in Cardiomyocytes through Caveolae-Gαq Interactions. Biophysical Journal, 2011, 100, 1599-1607.	0.5	17
45	Protein kinase C phosphorylation of PLCÎ ² 1 regulates its cellular localization. Archives of Biochemistry and Biophysics, 2011, 509, 186-190.	3.0	26
46	The correlation between multidomain enzymes and multiple activation mechanisms— The case of phospholipase Cβ and its membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2940-2947.	2.6	8
47	Differential Response to Morphine of the Oligomeric State of μ-Opioid in the Presence of δ-Opioid Receptors. Biochemistry, 2011, 50, 2829-2837.	2.5	39
48	The differential affinity of the usher for chaperone–subunit complexes is required for assembly of complete pili. Molecular Microbiology, 2010, 76, 159-172.	2.5	25
49	The Small G Protein Rac1 Activates Phospholipase Cl´1 through Phospholipase Cl²2. Journal of Biological Chemistry, 2010, 285, 24999-25008.	3.4	13
50	Regulation of Phospholipase C Beta - Rac1 Cytoskeletal Pathways by Gamma Synuclein. Biophysical Journal, 2010, 98, 689a-690a.	0.5	0
51	The effect of membrane domains on the G protein–phospholipase Cβ signaling pathway. Critical Reviews in Biochemistry and Molecular Biology, 2010, 45, 97-105.	5.2	18
52	Identification of a Novel Binding Partner of Phospholipase Cβ1: Translin-Associated Factor X. PLoS ONE, 2010, 5, e15001.	2.5	46
53	Evidence for a Second, High Affinity Gβγ Binding Site on Gαi1(GDP) Subunits. Journal of Biological Chemistry, 2009, 284, 16906-16913.	3.4	9
54	Expression and function of phospholipase C in breast carcinoma. Advances in Enzyme Regulation, 2009, 49, 59-73.	2.6	19

#	Article	IF	CITATIONS
55	A Self-Scaffolding Model for G Protein Signaling. Journal of Molecular Biology, 2009, 387, 92-103.	4.2	4
56	Novel endogenous peptide agonists of cannabinoid receptors. FASEB Journal, 2009, 23, 3020-3029.	0.5	135
57	Gαq Binds Two Effectors Separately in Cells: Evidence for Predetermined Signaling Pathways. Biophysical Journal, 2008, 95, 2575-2582.	0.5	19
58	Caveolin-1 alters Ca2+ signal duration through specific interaction with the Gαq family of G proteins. Journal of Cell Science, 2008, 121, 1363-1372.	2.0	39
59	Signaling through a G Protein-coupled Receptor and Its Corresponding G Protein Follows a Stoichiometrically Limited Model. Journal of Biological Chemistry, 2007, 282, 19203-19216.	3.4	83
60	A novel empirical free energy function that explains and predicts protein–protein binding affinities. Biophysical Chemistry, 2007, 129, 198-211.	2.8	57
61	Stimulation of phospholipase Cβ by membrane interactions, interdomain movement, and G protein binding — How many ways can you activate an enzyme?. Cellular Signalling, 2007, 19, 1383-1392.	3.6	61
62	Real-Time Measurements of Protein Affinities on Membrane Surfaces by Fluorescence Spectroscopy. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pl5-pl5.	3.9	10
63	Stable Association between Gαq and Phospholipase Cβ1 in Living Cells. Journal of Biological Chemistry, 2006, 281, 23999-24014.	3.4	65
64	Cloning and characterization of a phospholipase C-beta isoform from the sea urchin Lytechinus pictus. Development Growth and Differentiation, 2005, 47, 307-321.	1.5	4
65	Phospholipase Cβ2 Binds to and Inhibits Phospholipase CĨ´1. Journal of Biological Chemistry, 2005, 280, 1438-1447.	3.4	58
66	Fluorescence Studies Suggest a Role for α-Synuclein in the Phosphatidylinositol Lipid Signaling Pathway. Biochemistry, 2005, 44, 462-470.	2.5	55
67	The Cysteine Residues of HIV-1 Capsid Regulate Oligomerization and Cyclophilin A-Induced Changes. Biophysical Journal, 2005, 88, 2078-2088.	0.5	15
68	Determination of the Activation Volume of PLCβ by Gβγ-Subunits through the Use of High Hydrostatic Pressure. Biophysical Journal, 2005, 88, 2867-2874.	0.5	13
69	The Use of Green Fluorescent Proteins to View Association Between Phospholipase Cl ² and G Protein Subunits in Cells. , 2004, 237, 223-232.		3
70	N-terminal Myristoylation Regulates Calcium-induced Conformational Changes in Neuronal Calcium Sensor-1. Journal of Biological Chemistry, 2004, 279, 27158-27167.	3.4	47
71	The pH dependence of HIV-1 capsid assembly and its interaction with cyclophilin A. Biophysical Chemistry, 2003, 105, 67-77.	2.8	7
72	Role of HIV-1 Gag domains in viral assembly. Biochimica Et Biophysica Acta - Biomembranes, 2003, 1614, 62-72.	2.6	89

#	Article	IF	CITATIONS
73	The Pleckstrin Homology Domains of Phospholipases C-β and -δ Confer Activation through a Common Site. Journal of Biological Chemistry, 2003, 278, 29995-30004.	3.4	16
74	Role of Dynamic Interactions in Effective Signal Transfer for Gβ Stimulation of Phospholipase C-β2. Journal of Biological Chemistry, 2002, 277, 49707-49715.	3.4	7
75	Regulation of the Lateral Association of Phospholipase Cβ2and G Protein Subunits by Lipid Raftsâ€. Biochemistry, 2002, 41, 7092-7099.	2.5	12
76	Multiple roles of pleckstrin homology domains in phospholipase CÎ ² function. FEBS Letters, 2002, 531, 28-32.	2.8	26
77	Determination of Strength and Specificity of Membrane-Bound G Protein-Phospholipase C Association Using Fluorescence Spectroscopy. Methods in Enzymology, 2002, 345, 306-327.	1.0	5
78	HIV-1 Capsid Protein Forms Spherical (Immature-Like) and Tubular (Mature-Like) Particles in Vitro: Structure Switching by pH-induced Conformational Changes. Biophysical Journal, 2001, 81, 586-594.	0.5	82
79	Membrane Binding and Self-Association of α-Synucleinsâ€. Biochemistry, 2001, 40, 9927-9934.	2.5	175
80	Determination of the Contact Energies between a Regulator of G Protein Signaling and G Protein Subunits and Phospholipase Cl21â€. Biochemistry, 2001, 40, 414-421.	2.5	53
81	Role of the γ Subunit Prenyl Moiety in G Protein βγ Complex Interaction with Phospholipase Cβ. Journal of Biological Chemistry, 2001, 276, 41797-41802.	3.4	36
82	The Pleckstrin Homology Domain of Phospholipase C-β2 Links the Binding of Gβγ to Activation of the Catalytic Core. Journal of Biological Chemistry, 2000, 275, 7466-7469.	3.4	88
83	Binding of equine infectious anemia virus matrix protein to membrane bilayers involves multiple interactions. Journal of Molecular Biology, 2000, 296, 887-898.	4.2	30
84	Resolution of a Signal Transfer Region from a General Binding Domain in G for Stimulation of Phospholipase C-2. Science, 1999, 283, 1332-1335.	12.6	34
85	Differential Association of the Pleckstrin Homology Domains of Phospholipases C-β1, C-β2, and C-δ1 with Lipid Bilayers and the βγ Subunits of Heterotrimeric G Proteins. Biochemistry, 1999, 38, 1517-1524.	2.5	100
86	Rotavirus Capsid Protein VP5* Permeabilizes Membranes. Journal of Virology, 1999, 73, 3147-3153.	3.4	77
87	Regulation of effectors by G-protein \hat{I}_{\pm} - and $\hat{I}^{2}\hat{I}^{3}$ -Subunits. Biochemical Pharmacology, 1997, 54, 429-435.	4.4	48
88	Role of phosphatidylethanolamine lipids in the stabilization of protein-lipid contacts. Biophysical Chemistry, 1997, 67, 269-279.	2.8	24
89	Membrane Binding of Phospholipases C-β1and C-β2Is Independent of Phosphatidylinositol 4,5-Bisphosphate and the α and βγ Subunits of G Proteinsâ€. Biochemistry, 1996, 35, 16824-16832.	2.5	80
90	The pleckstrin homology domain of phospholipase Cdelta.1 binds with high affinity to phosphatidylinositol 4,5-bisphosphate in bilayer membranes. Biochemistry, 1995, 34, 16228-16234.	2.5	286

#	Article	IF	CITATIONS
91	Binding properties of coumestrol to expressed human estrogen receptor. Molecular and Cellular Endocrinology, 1995, 115, 65-72.	3.2	14
92	ASSESSMENT OF DIELECTRIC ENRICHMENT AROUND TWO FLUOROPHORES IN BINARY SOLVENTS. Photochemistry and Photobiology, 1994, 60, 343-347.	2.5	10
93	Local motions of fluorophores. Biology of Metals, 1990, 3, 127-130.	1.1	0