
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sensitivity of Multifrequency Polarimetric SAR Data to Postfire Permafrost Changes and Recovery Processes in Arctic Tundra. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	6.3	2
2	Lake and drained lake basin systems in lowland permafrost regions. Nature Reviews Earth & Environment, 2022, 3, 85-98.	29.7	41
3	Drivers, dynamics and impacts of changing Arctic coasts. Nature Reviews Earth & Environment, 2022, 3, 39-54.	29.7	74
4	Spatial snowdrift modelling for an open natural terrain using a physicallyâ€based linear particle distribution equation. Hydrological Processes, 2022, 36, .	2.6	3
5	The shifting mosaic of ice-wedge degradation and stabilization in response to infrastructure and climate change, Prudhoe Bay Oilfield, Alaska, USA. Arctic Science, 2022, 8, 498-530.	2.3	12
6	Yedoma Cryostratigraphy of Recently Excavated Sections of the CRREL Permafrost Tunnel Near Fairbanks, Alaska. Frontiers in Earth Science, 2022, 9, .	1.8	7
7	Understanding Effects of Permafrost Degradation and Coastal Erosion on Civil Infrastructure in Arctic Coastal Villages: A Community Survey and Knowledge Co-Production. Journal of Marine Science and Engineering, 2022, 10, 422.	2.6	9
8	A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry. Cryosphere, 2022, 16, 1247-1264.	3.9	5
9	Expanding beaver pond distribution in Arctic Alaska, 1949 to 2019. Scientific Reports, 2022, 12, 7123.	3.3	8
10	The Role of Thermal Denudation in Erosion of Ice-Rich Permafrost Coasts in an Enclosed Bay (Gulf of) Tj ETQq0 0	0 rgBT /Ov 1.8	erlock 10 Tf
11	Geochemistry of Coastal Permafrost and Erosion-Driven Organic Matter Fluxes to the Beaufort Sea Near Drew Point, Alaska. Frontiers in Earth Science, 2021, 8, .	1.8	6
12	An Object-Based Approach for Mapping Tundra Ice-Wedge Polygon Troughs from Very High Spatial Resolution Optical Satellite Imagery. Remote Sensing, 2021, 13, 558.	4.0	17
13	Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environmental Research Letters. 2021. 16. 035010.	5.2	21

14	Landsat-derived bathymetry of lakes on the Arctic Coastal Plain of northern Alaska. Earth System Science Data, 2021, 13, 1135-1150.	9.9	6
15	Fluvioâ€thermal erosion and thermal denudation in the yedoma region of northern Alaska: Revisiting the Itkillik River exposure. Permafrost and Periglacial Processes, 2021, 32, 277-298.	3.4	14
16	Geophysical Observations of Taliks Below Drained Lake Basins on the Arctic Coastal Plain of Alaska. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020889.	3.4	9
17	Tussocks Enduring or Shrubs Greening: Alternate Responses to Changing Fire Regimes in the Noatak River Valley, Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006009.	3.0	8
18	Remote Sensing-Based Statistical Approach for Defining Drained Lake Basins in a Continuous	4.0	8

a continuous Permafrost Region, North Slope of Alaska. Remote Sensing, 2021, 13, 2539. 18

#	Article	IF	CITATIONS
19	First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region. Biogeosciences, 2021, 18, 3917-3936.	3.3	12
20	Unpiloted Aerial Vehicle Retrieval of Snow Depth Over Freshwater Lake Ice Using Structure From Motion. Frontiers in Remote Sensing, 2021, 2, .	3.5	5
21	A Quantitative Graph-Based Approach to Monitoring Ice-Wedge Trough Dynamics in Polygonal Permafrost Landscapes. Remote Sensing, 2021, 13, 3098.	4.0	12
22	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	5.2	39
23	Potential of Full-Polarimetric P-and L-Band SAR Data in Characterizing Post-Fire Recovery of Arctic Tundra. , 2021, , .		0
24	Seven Decades of Coastal Change at Barter Island, Alaska: Exploring the Importance of Waves and Temperature on Erosion of Coastal Permafrost Bluffs. Remote Sensing, 2021, 13, 4420.	4.0	8
25	Recent warming reverses forty-year decline in catastrophic lake drainage and hastens gradual lake drainage across northern Alaska. Environmental Research Letters, 2021, 16, 124019.	5.2	13
26	Multi-Dimensional Remote Sensing Analysis Documents Beaver-Induced Permafrost Degradation, Seward Peninsula, Alaska. Remote Sensing, 2021, 13, 4863.	4.0	5
27	Thermokarst acceleration in Arctic tundra driven by climate change and fire disturbance. One Earth, 2021, 4, 1718-1729.	6.8	14
28	Feasibility of tundra vegetation height retrieval from Sentinel-1 and Sentinel-2 data. Remote Sensing of Environment, 2020, 237, 111515.	11.0	42
29	Understanding the Effects of Optimal Combination of Spectral Bands on Deep Learning Model Predictions: A Case Study Based on Permafrost Tundra Landform Mapping Using High Resolution Multispectral Satellite Imagery. Journal of Imaging, 2020, 6, 97.	3.0	22
30	Understanding the synergies of deep learning and data fusion of multispectral and panchromatic high resolution commercial satellite imagery for automated ice-wedge polygon detection. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170, 174-191.	11.1	32
31	Transferability of the Deep Learning Mask R-CNN Model for Automated Mapping of Ice-Wedge Polygons in High-Resolution Satellite and UAV Images. Remote Sensing, 2020, 12, 1085.	4.0	33
32	Influence of surface water on coarse resolution C-band backscatter: Implications for freeze/thaw retrieval from scatterometer data. Remote Sensing of Environment, 2020, 247, 111911.	11.0	7
33	Geometric and Material Variability Influences Stress States Relevant to Coastal Permafrost Bluff Failure. Frontiers in Earth Science, 2020, 8, .	1.8	8
34	Mapping Exposure to Flooding in Three Coastal Communities on the North Slope of Alaska Using Airborne LiDAR. Coastal Management, 2020, 48, 96-117.	2.0	12
35	Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafrost and Periglacial Processes, 2020, 31, 239-254.	3.4	14
36	Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environmental Research Letters, 2020, 15, 075005.	5.2	20

#	Article	IF	CITATIONS
37	Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska. Permafrost and Periglacial Processes, 2020, 31, 110-127.	3.4	30
38	Recurring outburst floods from drained lakes: an emerging Arctic hazard. Frontiers in Ecology and the Environment, 2020, 18, 384-390.	4.0	18
39	Prevention and control measures for coastal erosion in northern high-latitude communities: a systematic review based on Alaskan case studies. Environmental Research Letters, 2020, 15, 093002.	5.2	18
40	High potential for loss of permafrost landforms in a changing climate. Environmental Research Letters, 2020, 15, 104065.	5.2	28
41	The catastrophic thermokarst lake drainage events of 2018 in northwestern Alaska: fast-forward into the future. Cryosphere, 2020, 14, 4279-4297.	3.9	51
42	Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Global Change Biology, 2019, 25, 1171-1189.	9.5	91
43	Ice roads through lake-rich Arctic watersheds: Integrating climate uncertainty and freshwater habitat responses into adaptive management. Arctic, Antarctic, and Alpine Research, 2019, 51, 9-23.	1.1	22
44	Potential shifts in zooplankton community structure in response to changing ice regimes and hydrologic connectivity. Arctic, Antarctic, and Alpine Research, 2019, 51, 327-345.	1.1	15
45	Rapid initialization of retrogressive thaw slumps in the Canadian high Arctic and their response to climate and terrain factors. Environmental Research Letters, 2019, 14, 055006.	5.2	80
46	Timing and Potential Causes of 19th-Century Glacier Advances in Coastal Alaska Based on Tree-Ring Dating and Historical Accounts. Frontiers in Earth Science, 2019, 7, .	1.8	7
47	Traumatic Resin Ducts in Alaska Mountain Hemlock Trees Provide a New Proxy for Winter Storminess. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1923-1938.	3.0	11
48	Organic Carbon and Nitrogen Stocks Along a Thermokarst Lake Sequence in Arctic Alaska. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1230-1247.	3.0	16
49	Surface nuclear magnetic resonance observations of permafrost thaw below floating, bedfast, and transitional ice lakes. Geophysics, 2019, 84, EN33-EN45.	2.6	13
50	Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Frontiers in Earth Science, 2019, 7, .	1.8	25
51	Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25†years of space-borne SAR imagery. Remote Sensing of Environment, 2018, 209, 660-676.	11.0	57
52	Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska. Quaternary Science Reviews, 2018, 182, 175-190.	3.0	33
53	Modelling the impacts of projected sea ice decline on the low atmosphere and nearâ€surface permafrost on the North Slope of Alaska. International Journal of Climatology, 2018, 38, 5491-5504.	3.5	5
54	Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology, 2018, 46, 783-786.	4.4	11

BENJAMIN JONES

#	Article	IF	CITATIONS
55	Contrasting lake ice responses to winter climate indicate future variability and trends on the Alaskan Arctic Coastal Plain. Environmental Research Letters, 2018, 13, 125001.	5.2	11
56	A decade of remotely sensed observations highlight complex processes linked to coastal permafrost bluff erosion in the Arctic. Environmental Research Letters, 2018, 13, 115001.	5.2	73
57	Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nature Communications, 2018, 9, 5423.	12.8	179
58	Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes. Journal of Geophysical Research: Solid Earth, 2018, 123, 9310-9323.	3.4	21
59	Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 2018, 15, 5287-5313.	3.3	143
60	Sedimentary and geochemical characteristics of two small permafrost-dominated Arctic river deltas in northern Alaska. Arktos, 2018, 4, 1-18.	1.0	4
61	Tundra be dammed: Beaver colonization of the Arctic. Global Change Biology, 2018, 24, 4478-4488.	9.5	66
62	Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations – A case study in northern Alaska. Remote Sensing of Environment, 2018, 216, 529-543.	11.0	10
63	Temporal and spatial variability in coastline response to declining sea-ice in northwest Alaska. Marine Geology, 2018, 404, 71-83.	2.1	47
64	Remotely Sensing the Morphometrics and Dynamics of a Cold Region Dune Field Using Historical Aerial Photography and Airborne LiDAR Data. Remote Sensing, 2018, 10, 792.	4.0	18
65	21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nature Communications, 2018, 9, 3262.	12.8	187
66	Remote Sensing Leads to Better Understanding of Polar Regions. Eos, 2018, 99, .	0.1	3
67	Younger-Dryas cooling and sea-ice feedbacks were prominent features of the Pleistocene-Holocene transition in Arctic Alaska. Quaternary Science Reviews, 2017, 169, 330-343.	3.0	36
68	A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes. Ambio, 2017, 46, 769-786.	5.5	19
69	Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sensing, 2017, 9, 640.	4.0	110
70	PeRL: aÂcircum-Arctic Permafrost Region Pond andÂLakeÂdatabase. Earth System Science Data, 2017, 9, 317-348.	9.9	62
71	Presence of rapidly degrading permafrost plateaus in south-central Alaska. Cryosphere, 2016, 10, 2673-2692.	3.9	34
72	Evidence of multiple thermokarst lake generations from an 11Â800â€yearâ€old permafrost core on the northern S eward P eninsula, A laska. Boreas, 2016, 45, 584-603.	2.4	24

#	Article	IF	CITATIONS
73	Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophysical Research Letters, 2016, 43, 6358-6365.	4.0	68
74	Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska. Environmental Research Letters, 2016, 11, 074022.	5.2	22
75	Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology, 2016, 273, 116-133.	2.6	66
76	Midâ€Wisconsin to Holocene Permafrost and Landscape Dynamics based on a Drained Lake Basin Core from the Northern Seward Peninsula, Northwest Alaska. Permafrost and Periglacial Processes, 2016, 27, 56-75.	3.4	26
77	Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain. Arktos, 2016, 2, 1.	1.0	16
78	High-resolution records detect human-caused changes to the boreal forest wildfire regime in interior Alaska. Holocene, 2016, 26, 1064-1074.	1.7	11
79	The evolution of a thermokarst-lake landscape: Late Quaternary permafrost degradation and stabilization in interior Alaska. Sedimentary Geology, 2016, 340, 3-14.	2.1	35
80	Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 2015, 5, 15865.	3.3	139
81	Depth, ice thickness, and iceâ€out timing cause divergent hydrologic responses among Arctic lakes. Water Resources Research, 2015, 51, 9379-9401.	4.2	66
82	A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Scientific Data, 2015, 2, 150008.	5.3	153
83	Observing a Catastrophic Thermokarst Lake Drainage in Northern Alaska. Permafrost and Periglacial Processes, 2015, 26, 119-128.	3.4	76
84	Reconstructing Turbidity in a Glacially Influenced Lake Using the Landsat TM and ETM+ Surface Reflectance Climate Data Record Archive, Lake Clark, Alaska. Remote Sensing, 2015, 7, 13692-13710.	4.0	26
85	Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes. Biogeosciences, 2015, 12, 29-47.	3.3	25
86	Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1630-1651.	3.0	49
87	Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska. Cryosphere, 2014, 8, 815-826.	3.9	50
88	Spatio-Temporal Analysis of Gyres in Oriented Lakes on the Arctic Coastal Plain of Northern Alaska Based on Remotely Sensed Images. Remote Sensing, 2014, 6, 9170-9193.	4.0	11
89	InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophysical Research Letters, 2014, 41, 3906-3913.	4.0	64
90	Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophysical Research Letters, 2013, 40, 535-540.	4.0	45

6

#	Article	IF	CITATIONS
91	Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data. International Journal of Remote Sensing, 2013, 34, 8267-8279.	2.9	27
92	Quantifying landscape change in an arctic coastal lowland using repeat airborne LiDAR. Environmental Research Letters, 2013, 8, 045025.	5.2	47
93	Recent lake iceâ€out phenology within and among lake districts of Alaska, U.S.A. Limnology and Oceanography, 2013, 58, 2013-2028.	3.1	59
94	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	3.0	58
95	Process-Based Coastal Erosion Modeling for Drew Point, North Slope, Alaska. Journal of Waterway, Port, Coastal and Ocean Engineering, 2012, 138, 122-130.	1.2	36
96	The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environmental Research Letters, 2012, 7, 044039.	5.2	98
97	Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska. Geomorphology, 2012, 138, 1-14.	2.6	37
98	Drainage Network Structure and Hydrologic Behavior of Three Lake-Rich Watersheds on the Arctic Coastal Plain, Alaska. Arctic, Antarctic, and Alpine Research, 2012, 44, 385-398.	1.1	41
99	Peat accumulation in drained thermokarst lake basins in continuous, iceâ€rich permafrost, northern Seward Peninsula, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	84
100	Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska. Geophysical Research Letters, 2012, 39, .	4.0	73
101	Characterizing Post-Drainage Succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI Data. Remote Sensing, 2012, 4, 3741-3765.	4.0	33
102	Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska. Natural Hazards and Earth System Sciences, 2012, 12, 1521-1537.	3.6	37
103	Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research, 2011, 116, .	3.3	250
104	Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, northern Seward Peninsula, Alaska, USA. Earth Surface Processes and Landforms, 2011, 36, 1889-1897.	2.5	21
105	Hydrogeomorphic processes of thermokarst lakes with groundedâ€ice and floatingâ€ice regimes on the Arctic coastal plain, Alaska. Hydrological Processes, 2011, 25, 2422-2438.	2.6	106
106	Spatial distribution of pingos in northern Asia. Cryosphere, 2011, 5, 13-33.	3.9	44
107	Two mechanisms of aquatic and terrestrial habitat change along an Alaskan Arctic coastline. Polar Biology, 2010, 33, 1629-1640.	1.2	42
108	Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling ¹ . Journal of the American Water Resources Association, 2010, 46, 777-791.	2.4	30

BENJAMIN JONES

#	Article	IF	CITATIONS
109	Sikuliqiruq: ice dynamics of the Meade River – Arctic Alaska, from freezeup to breakup from time-series ground imagery. Polar Geography, 2010, 33, 115-137.	1.9	2
110	Fire Behavior, Weather, and Burn Severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 2009, 41, 309-316.	1.1	115
111	Arctic Lake Physical Processes and Regimes with Implications for Winter Water Availability and Management in the National Petroleum Reserve Alaska. Environmental Management, 2009, 43, 1071-1084.	2.7	70
112	Erosional history of Cape Halkett and contemporary monitoring of bluff retreat, Beaufort Sea coast, Alaska. Polar Geography, 2009, 32, 129-142.	1.9	26
113	Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters, 2009, 36, .	4.0	252
114	Advancing Landscape Change Research through the Incorporation of Iñupiaq Knowledge. Arctic, 2009, 62, .	0.4	22
115	Modern Erosion Rates and Loss of Coastal Features and Sites, Beaufort Sea Coastline, Alaska. Arctic, 2009, 61, .	0.4	14
116	Radar imaging of winter seismic survey activity in the National Petroleum Reserve-Alaska. Polar Record, 2008, 44, 227-231.	0.8	1
117	Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. Journal of Geophysical Research, 2007, 112, .	3.3	134
118	Application of groundâ€penetrating radar imagery for threeâ€dimensional visualisation of nearâ€surface structures in iceâ€rich permafrost, Barrow, Alaska. Permafrost and Periglacial Processes, 2007, 18, 309-321.	3.4	51
119	Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217, 187-204.	2.3	34
120	The Polar WRF Downscaled Historical and Projected Twenty-First Century Climate for the Coast and Foothills of Arctic Alaska. Frontiers in Earth Science, 0, 5, .	1.8	13