## **Christiane Berger-Schaffitzel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121683/publications.pdf Version: 2024-02-01



CHRISTIANE

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370, 725-730.                                                                                                                                  | 12.6 | 348       |
| 2  | Protein complex expression by using multigene baculoviral vectors. Nature Methods, 2006, 3, 1021-1032.                                                                                                                                            | 19.0 | 330       |
| 3  | Ribosome display: an in vitro method for selection and evolution of antibodies from libraries. Journal of Immunological Methods, 1999, 231, 119-135.                                                                                              | 1.4  | 202       |
| 4  | The architecture of human general transcription factor TFIID core complex. Nature, 2013, 493, 699-702.                                                                                                                                            | 27.8 | 142       |
| 5  | Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial<br>holo-translocon SecYEG–SecDF–YajC–YidC. Proceedings of the National Academy of Sciences of the<br>United States of America, 2014, 111, 4844-4849. | 7.1  | 124       |
| 6  | Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Molecular Cell, 2015, 58, 977-988.                                                                                                                               | 9.7  | 120       |
| 7  | PABP enhances release factor recruitment and stop codon recognition during translation termination. Nucleic Acids Research, 2016, 44, 7766-7776.                                                                                                  | 14.5 | 99        |
| 8  | Automated unrestricted multigene recombineering for multiprotein complex production. Nature Methods, 2009, 6, 447-450.                                                                                                                            | 19.0 | 98        |
| 9  | Robots, pipelines, polyproteins: Enabling multiprotein expression in prokaryotic and eukaryotic cells.<br>Journal of Structural Biology, 2011, 175, 198-208.                                                                                      | 2.8  | 92        |
| 10 | Dual function of UPF3B in early and late translation termination. EMBO Journal, 2017, 36, 2968-2986.                                                                                                                                              | 7.8  | 89        |
| 11 | The SARS-CoV-2 spike protein: balancing stability and infectivity. Cell Research, 2020, 30, 1059-1060.                                                                                                                                            | 12.0 | 82        |
| 12 | Cytoplasmic TAF2–TAF8–TAF10 complex provides evidence for nuclear holo–TFIID assembly from preformed submodules. Nature Communications, 2015, 6, 6011.                                                                                            | 12.8 | 77        |
| 13 | Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid<br>Pocket of the SARSâ€CoVâ€2 Spike Protein**. Angewandte Chemie - International Edition, 2021, 60, 7098-7110.                                   | 13.8 | 77        |
| 14 | Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Research, 2018, 46, 2678-2689.                                                                                                                           | 14.5 | 76        |
| 15 | Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG–SecDF–YajC–YidC.<br>Biochemical Journal, 2016, 473, 3341-3354.                                                                                                    | 3.7  | 61        |
| 16 | A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion.<br>Scientific Reports, 2016, 6, 38399.                                                                                                           | 3.3  | 54        |
| 17 | A network of SMG-8, SMG-9 and SMG-1 C-terminal insertion domain regulates UPF1 substrate recruitment and phosphorylation. Nucleic Acids Research, 2015, 43, 7600-7611.                                                                            | 14.5 | 51        |
| 18 | Multiprotein Expression Strategy for Structural Biology of Eukaryotic Complexes. Structure, 2007, 15, 275-279.                                                                                                                                    | 3.3  | 50        |

CHRISTIANE

| #  | Article                                                                                                                                                                                              | lF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nature<br>Communications, 2017, 8, 1729.                                                                                | 12.8 | 46        |
| 20 | Structural and functional analysis of the three MIF4G domains of nonsense-mediated decay factor UPF2. Nucleic Acids Research, 2014, 42, 2673-2686.                                                   | 14.5 | 43        |
| 21 | New insights into no-go, non-stop and nonsense-mediated mRNA decay complexes. Current Opinion in<br>Structural Biology, 2020, 65, 110-118.                                                           | 5.7  | 40        |
| 22 | New insights into the interplay between the translation machinery and nonsense-mediated mRNA decay factors. Biochemical Society Transactions, 2018, 46, 503-512.                                     | 3.4  | 38        |
| 23 | Advances and challenges of membrane–protein complex production. Current Opinion in Structural<br>Biology, 2015, 32, 123-130.                                                                         | 5.7  | 32        |
| 24 | Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically encoded multiepitope display. Science Advances, 2019, 5, eaaw2853.                                        | 10.3 | 29        |
| 25 | Ribosome–SRP–FtsY cotranslational targeting complex in the closed state. Proceedings of the<br>National Academy of Sciences of the United States of America, 2015, 112, 3943-3948.                   | 7.1  | 26        |
| 26 | MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses,<br>2019, 11, 198.                                                                                | 3.3  | 25        |
| 27 | Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science, 2022, 377, .                                                                                                | 12.6 | 24        |
| 28 | Structural insights in cell-type specific evolution of intra-host diversity by SARS-CoV-2. Nature Communications, 2022, 13, 222.                                                                     | 12.8 | 23        |
| 29 | Structure and Dynamics of the Central Lipid Pool and Proteins of the Bacterial Holo-Translocon.<br>Biophysical Journal, 2019, 116, 1931-1940.                                                        | 0.5  | 22        |
| 30 | Structural biology in the fight against COVID-19. Nature Structural and Molecular Biology, 2021, 28, 2-7.                                                                                            | 8.2  | 20        |
| 31 | Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein.<br>Nature Communications, 2022, 13, 868.                                                       | 12.8 | 20        |
| 32 | The fatty acid site is coupled to functional motifs in the SARS-CoV-2 spike protein and modulates spike allosteric behaviour. Computational and Structural Biotechnology Journal, 2022, 20, 139-147. | 4.1  | 19        |
| 33 | ACEMBL Tool-Kits for High-Throughput Multigene Delivery and Expression in Prokaryotic and Eukaryotic Hosts. Advances in Experimental Medicine and Biology, 2016, 896, 27-42.                         | 1.6  | 17        |
| 34 | Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Research, 2022, 50, 7783-7799.                                            | 14.5 | 15        |
| 35 | Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Research, 2021, 49, 7665-7679.                                               | 14.5 | 13        |
| 36 | ACEMBLing a Multiprotein Transmembrane Complex. Methods in Enzymology, 2015, 556, 23-49.                                                                                                             | 1.0  | 9         |

CHRISTIANE

| #  | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | VLPâ€factoryâ"¢ and ADDomer <sup>©</sup> : Selfâ€assembling Virusâ€Like Particle (VLP) Technologies for<br>Multiple Protein and Peptide Epitope Display. Current Protocols, 2021, 1, e55.                                                   | 2.9  | 9         |
| 38 | Identification and Phenotypic Characterization of Hsp90 Phosphorylation Sites That Modulate<br>Virulence Traits in the Major Human Fungal Pathogen Candida albicans. Frontiers in Cellular and<br>Infection Microbiology, 2021, 11, 637836. | 3.9  | 9         |
| 39 | No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors.<br>Biochemical Journal, 2022, 479, 973-993.                                                                                                    | 3.7  | 9         |
| 40 | Structures of nonsense-mediated mRNA decay factors UPF3B and UPF3A in complex with UPF2 reveal molecular basis for competitive binding and for neurodevelopmental disorder-causing mutation. Nucleic Acids Research, 2022, 50, 5934-5947.   | 14.5 | 8         |
| 41 | High-Throughput Production of Influenza Virus-Like Particle (VLP) Array by Using VLP-factoryâ"¢, a<br>MultiBac Baculoviral Genome Customized for Enveloped VLP Expression. Methods in Molecular<br>Biology, 2019, 2025, 213-226.            | 0.9  | 7         |
| 42 | Frontispiz: Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free<br>Fatty Acid Pocket of the SARSâ€CoVâ€⊋ Spike Protein. Angewandte Chemie, 2021, 133, .                                                   | 2.0  | 7         |
| 43 | Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free Fatty Acid<br>Pocket of the SARS oVâ€2 Spike Protein**. Angewandte Chemie, 2021, 133, 7174-7186.                                                      | 2.0  | 6         |
| 44 | Efficient production of a mature and functional gamma secretase protease. Scientific Reports, 2018, 8, 12834.                                                                                                                               | 3.3  | 5         |
| 45 | Cloning, expression, and purification of intact polyketide synthase modules. Methods in Enzymology, 2019, 617, 63-82.                                                                                                                       | 1.0  | 3         |
| 46 | Continuous fluorescence-based measurement of redox-driven sodium ion translocation. Analytical Biochemistry, 2014, 459, 53-55.                                                                                                              | 2.4  | 2         |
| 47 | Multiprotein Complex Production in E. coli: The SecYEG-SecDFYajC-YidC Holotranslocon. Methods in<br>Molecular Biology, 2017, 1586, 279-290.                                                                                                 | 0.9  | 2         |
| 48 | Production of Multi-subunit Membrane Protein Complexes. Methods in Molecular Biology, 2021, 2247, 3-16.                                                                                                                                     | 0.9  | 1         |
| 49 | Cell-Free Synthesis of Macromolecular Complexes. Advances in Experimental Medicine and Biology, 2016, 896, 79-95.                                                                                                                           | 1.6  | 0         |
| 50 | MCM2-7 conformational changes in the presence of DNA. Cell Cycle, 2016, 15, 2391-2392.                                                                                                                                                      | 2.6  | 0         |
| 51 | Frontispiece: Molecular Simulations suggest Vitamins, Retinoids and Steroids as Ligands of the Free<br>Fatty Acid Pocket of the SARS oVâ€2 Spike Protein. Angewandte Chemie - Intern <u>ational Edition, 2021, 60, .</u>                    | 13.8 | 0         |