
## **Elodie Ghedin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3121100/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Genome of the African Trypanosome Trypanosoma brucei. Science, 2005, 309, 416-422.                                                                            | 12.6 | 1,496     |
| 2  | The Genome Sequence of <i>Trypanosoma cruzi</i> , Etiologic Agent of Chagas Disease. Science, 2005, 309, 409-415.                                                 | 12.6 | 1,273     |
| 3  | The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460, 352-358.                                                                                    | 27.8 | 945       |
| 4  | Comparative Genomics of Trypanosomatid Parasitic Protozoa. Science, 2005, 309, 404-409.                                                                           | 12.6 | 713       |
| 5  | Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes. Science, 2007, 317, 1753-1756.                                          | 12.6 | 693       |
| 6  | Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers. American Journal of<br>Respiratory and Critical Care Medicine, 2013, 187, 1067-1075.  | 5.6  | 655       |
| 7  | Draft Genome of the Filarial Nematode Parasite <i>Brugia malayi</i> . Science, 2007, 317, 1756-1760.                                                              | 12.6 | 571       |
| 8  | The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic<br>Nematode. PLoS Biology, 2005, 3, e121.                                 | 5.6  | 529       |
| 9  | Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nature Microbiology, 2016, 1, 16031.                   | 13.3 | 436       |
| 10 | Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution.<br>Nature, 2005, 437, 1162-1166.                                  | 27.8 | 419       |
| 11 | Taxonomy of the order Mononegavirales: update 2016. Archives of Virology, 2016, 161, 2351-2360.                                                                   | 2.1  | 407       |
| 12 | Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and<br>Reassortment among Recent H3N2 Viruses. PLoS Biology, 2005, 3, e300. | 5.6  | 340       |
| 13 | The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds. PLoS Pathogens, 2008, 4, e1000076.                                              | 4.7  | 334       |
| 14 | The human mycobiome in health and disease. Genome Medicine, 2013, 5, 63.                                                                                          | 8.2  | 292       |
| 15 | Viral genome sequencing by random priming methods. BMC Genomics, 2008, 9, 5.                                                                                      | 2.8  | 282       |
| 16 | Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918. PLoS<br>Pathogens, 2008, 4, e1000012.                              | 4.7  | 243       |
| 17 | Genome Analysis Linking Recent European and African Influenza (H5N1) Viruses. Emerging Infectious<br>Diseases, 2007, 13, 713-718.                                 | 4.3  | 191       |
| 18 | Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature<br>Microbiology, 2019, 4, 1727-1736.                             | 13.3 | 184       |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Quantifying influenza virus diversity and transmission in humans. Nature Genetics, 2016, 48, 195-200.                                                                                                          | 21.4 | 182       |
| 20 | Widespread Colonization of the Lung by <i>Tropheryma whipplei</i> in HIV Infection. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1110-1117.                                          | 5.6  | 175       |
| 21 | Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus. PLoS<br>Pathogens, 2006, 2, e125.                                                                                      | 4.7  | 173       |
| 22 | Taxonomy of the order Mononegavirales: update 2017. Archives of Virology, 2017, 162, 2493-2504.                                                                                                                | 2.1  | 173       |
| 23 | A rapid and label-free platform for virus capture and identification from clinical samples.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 895-901.            | 7.1  | 157       |
| 24 | Taxonomy of the order Mononegavirales: update 2018. Archives of Virology, 2018, 163, 2283-2294.                                                                                                                | 2.1  | 153       |
| 25 | Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19359-19364. | 7.1  | 146       |
| 26 | Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome, 2018, 6, 12.                                                                                                               | 11.1 | 146       |
| 27 | Sequence Analysis of <i>In Vivo</i> Defective Interfering-Like RNA of Influenza A H1N1 Pandemic Virus.<br>Journal of Virology, 2013, 87, 8064-8074.                                                            | 3.4  | 144       |
| 28 | Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani.<br>Molecular and Biochemical Parasitology, 1996, 78, 79-90.                                                    | 1.1  | 130       |
| 29 | The early diversification of influenza A/H1N1pdm. PLOS Currents, 2009, 1, RRN1126.                                                                                                                             | 1.4  | 121       |
| 30 | Multicenter Comparison of Lung and Oral Microbiomes of HIV-infected and HIV-uninfected Individuals.<br>American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1335-1344.                       | 5.6  | 120       |
| 31 | Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.                                                                                                                     | 27.8 | 117       |
| 32 | Deep Sequencing Reveals Mixed Infection with 2009 Pandemic Influenza A (H1N1) Virus Strains and the<br>Emergence of Oseltamivir Resistance. Journal of Infectious Diseases, 2011, 203, 168-174.                | 4.0  | 113       |
| 33 | Topographic Diversity of the Respiratory Tract Mycobiome and Alteration in HIV and Lung Disease.<br>American Journal of Respiratory and Critical Care Medicine, 2015, 191, 932-942.                            | 5.6  | 113       |
| 34 | The genome of Onchocerca volvulus, agent of river blindness. Nature Microbiology, 2017, 2, 16216.                                                                                                              | 13.3 | 107       |
| 35 | Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. Nature Microbiology, 2021, 6, 1245-1258.                                         | 13.3 | 101       |
| 36 | Transmission Bottleneck Size Estimation from Pathogen Deep-Sequencing Data, with an Application to<br>Human Influenza A Virus. Journal of Virology, 2017, 91, .                                                | 3.4  | 100       |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Molecular Epidemiology of A/H3N2 and A/H1N1 Influenza Virus during a Single Epidemic Season in the<br>United States. PLoS Pathogens, 2008, 4, e1000133.                                                                                               | 4.7  | 97        |
| 38 | Stage-specific proteomic expression patterns of the human filarial parasite <i>Brugia malayi</i> and its<br>endosymbiont <i>Wolbachia</i> . Proceedings of the National Academy of Sciences of the United States<br>of America, 2011, 108, 9649-9654. | 7.1  | 97        |
| 39 | The Microbiome and the Lung. Annals of the American Thoracic Society, 2014, 11, S227-S232.                                                                                                                                                            | 3.2  | 97        |
| 40 | Mimivirus relatives in the Sargasso sea. Virology Journal, 2005, 2, 62.                                                                                                                                                                               | 3.4  | 96        |
| 41 | Mixed Infection and the Genesis of Influenza Virus Diversity. Journal of Virology, 2009, 83, 8832-8841.                                                                                                                                               | 3.4  | 95        |
| 42 | A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Molecular and Biochemical Parasitology, 2004, 136, 227-242.                                                 | 1.1  | 94        |
| 43 | Biologic, Antigenic, and Full-Length Genomic Characterization of a Bovine-Like Coronavirus Isolated from a Giraffe. Journal of Virology, 2007, 81, 4981-4990.                                                                                         | 3.4  | 94        |
| 44 | Gene synteny and evolution of genome architecture in trypanosomatids. Molecular and Biochemical<br>Parasitology, 2004, 134, 183-191.                                                                                                                  | 1.1  | 92        |
| 45 | Evolutionary History and Attenuation of Myxoma Virus on Two Continents. PLoS Pathogens, 2012, 8, e1002950.                                                                                                                                            | 4.7  | 91        |
| 46 | Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nature Communications, 2015, 6, 7491.                                                                                                      | 12.8 | 91        |
| 47 | Bovine-Like Coronaviruses Isolated from Four Species of Captive Wild Ruminants Are Homologous to<br>Bovine Coronaviruses, Based on Complete Genomic Sequences. Journal of Virology, 2008, 82,<br>12422-12431.                                         | 3.4  | 88        |
| 48 | Members of a Large Retroposon Family Are Determinants of Post-Transcriptional Gene Expression in<br>Leishmania. PLoS Pathogens, 2007, 3, e136.                                                                                                        | 4.7  | 87        |
| 49 | Helminth Genomics: The Implications for Human Health. PLoS Neglected Tropical Diseases, 2009, 3, e538.                                                                                                                                                | 3.0  | 86        |
| 50 | A Deep Sequencing Approach to Comparatively Analyze the Transcriptome of Lifecycle Stages of the<br>Filarial Worm, Brugia malayi. PLoS Neglected Tropical Diseases, 2011, 5, e1409.                                                                   | 3.0  | 86        |
| 51 | Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecology Letters, 2012, 15, 24-33.                                                                                             | 6.4  | 86        |
| 52 | Mining Predicted Essential Genes of Brugia malayi for Nematode Drug Targets. PLoS ONE, 2007, 2, e1189.                                                                                                                                                | 2.5  | 85        |
| 53 | Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome, 2016, 4, 3.                                                                                                                  | 11.1 | 83        |
| 54 | Development of high-yield influenza A virus vaccine viruses. Nature Communications, 2015, 6, 8148.                                                                                                                                                    | 12.8 | 81        |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | First sequenced genome of a parasitic nematode. Trends in Parasitology, 2004, 20, 151-153.                                                                                                                                                                                        | 3.3  | 80        |
| 56 | Genomic and Protein Structural Maps of Adaptive Evolution of Human Influenza A Virus to Increased<br>Virulence in the Mouse. PLoS ONE, 2011, 6, e21740.                                                                                                                           | 2.5  | 79        |
| 57 | Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm. Viruses, 2015, 7, 1020-1061.                                                                                                                                                                                     | 3.3  | 79        |
| 58 | Deliberate Attenuation of Chikungunya Virus by Adaptation to Heparan Sulfate-Dependent Infectivity: A<br>Model for Rational Arboviral Vaccine Design. PLoS Neglected Tropical Diseases, 2014, 8, e2719.                                                                           | 3.0  | 78        |
| 59 | Presence of Oseltamivir-Resistant Pandemic A/H1N1 Minor Variants Before Drug Therapy With Subsequent Selection and Transmission. Journal of Infectious Diseases, 2012, 206, 1504-1511.                                                                                            | 4.0  | 70        |
| 60 | Taxonomy of the order Mononegavirales: second update 2018. Archives of Virology, 2019, 164, 1233-1244.                                                                                                                                                                            | 2.1  | 70        |
| 61 | Cyclic Avian Mass Mortality in the Northeastern United States Is Associated with a Novel<br>Orthomyxovirus. Journal of Virology, 2015, 89, 1389-1403.                                                                                                                             | 3.4  | 68        |
| 62 | Mesoniviruses are mosquito-specific viruses with extensive geographic distribution and host range.<br>Virology Journal, 2014, 11, 97.                                                                                                                                             | 3.4  | 65        |
| 63 | Role of viral regulatory and accessory proteins in HIV-1 replication. Frontiers in Bioscience -<br>Landmark, 2004, 9, 2388.                                                                                                                                                       | 3.0  | 61        |
| 64 | Secretory and Endocytic Pathways Converge in a Dynamic Endosomal System in a Primitive Protozoan.<br>Traffic, 2001, 2, 175-188.                                                                                                                                                   | 2.7  | 60        |
| 65 | The sequence and analysis of Trypanosoma brucei chromosome II. Nucleic Acids Research, 2003, 31, 4856-4863.                                                                                                                                                                       | 14.5 | 59        |
| 66 | Quasispecies of bovine enteric and respiratory coronaviruses based on complete genome sequences and genetic changes after tissue culture adaptation. Virology, 2007, 363, 1-10.                                                                                                   | 2.4  | 58        |
| 67 | Intrahost Dynamics of Antiviral Resistance in Influenza A Virus Reflect Complex Patterns of Segment<br>Linkage, Reassortment, and Natural Selection. MBio, 2015, 6, .                                                                                                             | 4.1  | 58        |
| 68 | The lung mycobiome in the next-generation sequencing era. Virulence, 2017, 8, 334-341.                                                                                                                                                                                            | 4.4  | 57        |
| 69 | Phylogeography of the Spring and Fall Waves of the H1N1/09 Pandemic Influenza Virus in the United States. Journal of Virology, 2011, 85, 828-834.                                                                                                                                 | 3.4  | 54        |
| 70 | Molecular characterization of a new species in the genus Alphacoronavirus associated with mink epizootic catarrhal gastroenteritis. Journal of General Virology, 2011, 92, 1369-1379.                                                                                             | 2.9  | 53        |
| 71 | Dissection of the Functional Domains of theLeishmania Surface Membrane 3′-Nucleotidase/Nuclease, a<br>Unique Member of the Class I Nuclease Family. Journal of Biological Chemistry, 2000, 275, 16366-16372.                                                                      | 3.4  | 50        |
| 72 | Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein<br>3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and<br>porcine respiratory coronavirus. Virology, 2007, 358, 424-435. | 2.4  | 50        |

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | An early warning system for emerging SARS-CoV-2 variants. Nature Medicine, 2022, 28, 1110-1115.                                                                                                                                       | 30.7 | 47        |
| 74 | Prediction pipeline for discovery of regulatory motifs associated with Brugia malayiÂmolting. PLoS<br>Neglected Tropical Diseases, 2020, 14, e0008275.                                                                                | 3.0  | 46        |
| 75 | Stage-Specific Transcriptome and Proteome Analyses of the Filarial Parasite Onchocerca volvulus and<br>Its <i>Wolbachia</i> Endosymbiont. MBio, 2016, 7, .                                                                            | 4.1  | 45        |
| 76 | The genome of Brugia malayi — All worms are not created equal. Parasitology International, 2009, 58,<br>6-11.                                                                                                                         | 1.3  | 43        |
| 77 | Extensive Geographical Mixing of 2009 Human H1N1 Influenza A Virus in a Single University Community.<br>Journal of Virology, 2011, 85, 6923-6929.                                                                                     | 3.4  | 43        |
| 78 | Longitudinal analysis of the lung microbiota of cynomolgous macaques during long-term SHIV infection. Microbiome, 2016, 4, 38.                                                                                                        | 11.1 | 43        |
| 79 | Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq. PLoS Neglected<br>Tropical Diseases, 2017, 11, e0005357.                                                                                               | 3.0  | 43        |
| 80 | Identification of non-autonomous non-LTR retrotransposons in the genome of Trypanosoma cruzi.<br>Molecular and Biochemical Parasitology, 2002, 124, 73-78.                                                                            | 1.1  | 41        |
| 81 | Characterization of antibiotic resistance and host-microbiome interactions in the human upper respiratory tract during influenza infection. Microbiome, 2020, 8, 39.                                                                  | 11.1 | 41        |
| 82 | Brugia malayi Gene Expression in Response to the Targeting of the Wolbachia Endosymbiont by<br>Tetracycline Treatment. PLoS Neglected Tropical Diseases, 2009, 3, e525.                                                               | 3.0  | 40        |
| 83 | Arboretum and Puerto Almendras viruses: two novel rhabdoviruses isolated from mosquitoes in<br>Peru. Journal of General Virology, 2014, 95, 787-792.                                                                                  | 2.9  | 39        |
| 84 | Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>26926-26935.                       | 7.1  | 39        |
| 85 | A Potential Role for the Interaction of Wolbachia Surface Proteins with the Brugia malayi Glycolytic<br>Enzymes and Cytoskeleton in Maintenance of Endosymbiosis. PLoS Neglected Tropical Diseases, 2013, 7,<br>e2151.                | 3.0  | 38        |
| 86 | Sex chromosome evolution in parasitic nematodes of humans. Nature Communications, 2020, 11, 1964.                                                                                                                                     | 12.8 | 38        |
| 87 | Cell-to-Cell Variation in Defective Virus Expression and Effects on Host Responses during Influenza<br>Virus Infection. MBio, 2020, 11, .                                                                                             | 4.1  | 38        |
| 88 | Molecular Dissection of the Functional Domains of a Unique, Tartrate-resistant, Surface Membrane<br>Acid Phosphatase in the Primitive Human Pathogen Leishmania donovani. Journal of Biological<br>Chemistry, 2002, 277, 17994-18001. | 3.4  | 35        |
| 89 | Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3. BMC Genomics, 2009, 10, 267.                                                                                                | 2.8  | 35        |
| 90 | Use of bronchoalveolar lavage to assess the respiratory microbiome: signal in the noise. Lancet<br>Respiratory Medicine,the, 2013, 1, 354-356.                                                                                        | 10.7 | 35        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Role of transposable elements in trypanosomatids. Microbes and Infection, 2008, 10, 575-581.                                                                                    | 1.9 | 34        |
| 92  | Microbial Composition of the Human Nasopharynx Varies According to Influenza Virus Type and<br>Vaccination Status. MBio, 2019, 10, .                                            | 4.1 | 34        |
| 93  | Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. European Respiratory Journal, 2021, 58, 2003434.                           | 6.7 | 34        |
| 94  | Genome Scale Evolution of Myxoma Virus Reveals Host-Pathogen Adaptation and Rapid Geographic<br>Spread. Journal of Virology, 2013, 87, 12900-12915.                             | 3.4 | 32        |
| 95  | Evolution of non-LTR retrotransposons in the trypanosomatid genomes: Leishmania major has lost the active elements. Molecular and Biochemical Parasitology, 2006, 145, 158-170. | 1.1 | 31        |
| 96  | Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.<br>PLoS ONE, 2016, 11, e0153812.                                                | 2.5 | 31        |
| 97  | The ingi and RIME non-LTR Retrotransposons Are Not Randomly Distributed in the Genome of Trypanosoma brucei. Molecular Biology and Evolution, 2003, 21, 520-528.                | 8.9 | 30        |
| 98  | Mammalian Adaptation in the PB2 Gene of Avian H5N1 Influenza Virus. Journal of Virology, 2013, 87,<br>10884-10888.                                                              | 3.4 | 30        |
| 99  | A large-scale immuno-epidemiological simulation of influenza A epidemics. BMC Public Health, 2014, 14, 1019.                                                                    | 2.9 | 30        |
| 100 | Inducible Expression of Suicide Genes in Leishmania donovani Amastigotes. Journal of Biological<br>Chemistry, 1998, 273, 22997-23003.                                           | 3.4 | 29        |
| 101 | Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses.<br>Journal of Clinical Microbiology, 2017, 55, 3492-3501.                       | 3.9 | 29        |
| 102 | In vivo transfection of developmentally competent Brugia malayi infective larvae. International<br>Journal for Parasitology, 2011, 41, 355-362.                                 | 3.1 | 28        |
| 103 | Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea. Journal of<br>General Virology, 2013, 94, 2609-2615.                               | 2.9 | 28        |
| 104 | Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in<br>Senegal. Virology, 2013, 444, 80-89.                                        | 2.4 | 26        |
| 105 | Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and<br>Its Relationship to Other Mastadenoviruses. Journal of Virology, 2017, 91, .  | 3.4 | 26        |
| 106 | CRISPR-mediated Transfection of Brugia malayi. PLoS Neglected Tropical Diseases, 2020, 14, e0008627.                                                                            | 3.0 | 26        |
| 107 | Initial Mapping of the New York City Wastewater Virome. MSystems, 2020, 5, .                                                                                                    | 3.8 | 26        |
| 108 | The Trypanosoma cruzi L1Tc and NARTc Non-LTR Retrotransposons Show Relative Site Specificity for<br>Insertion. Molecular Biology and Evolution, 2006, 23, 411-420.              | 8.9 | 25        |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database. Nucleic<br>Acids Research, 2010, 38, D754-D764.                                                                        | 14.5 | 25        |
| 110 | Differential HHV-6A gene expression in T cells and primary human astrocytes based on multi-virus array analysis. Glia, 2006, 53, 789-798.                                                                           | 4.9  | 24        |
| 111 | The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus.<br>Genome Biology, 2009, 10, R18.                                                                            | 9.6  | 24        |
| 112 | Filarial and <i>Wolbachia</i> genomics. Parasite Immunology, 2012, 34, 121-129.                                                                                                                                     | 1.5  | 23        |
| 113 | Profiling the airway in the macaque model of tuberculosis reveals variable microbial dysbiosis and alteration of community structure. Microbiome, 2018, 6, 180.                                                     | 11.1 | 23        |
| 114 | Comparison of the nasopharynx microbiome between influenza and nonâ€influenza cases of severe acute respiratory infections: A pilot study. Health Science Reports, 2018, 1, e47.                                    | 1.5  | 22        |
| 115 | Genomic and phenotypic characterization of myxoma virus from Great Britain reveals multiple evolutionary pathways distinct from those in Australia. PLoS Pathogens, 2017, 13, e1006252.                             | 4.7  | 22        |
| 116 | Comparative Analysis of the Complete Genome Sequence of the California MSW Strain of Myxoma<br>Virus Reveals Potential Host Adaptations. Journal of Virology, 2013, 87, 12080-12089.                                | 3.4  | 21        |
| 117 | Viral evolution: beyond drift and shift. Current Opinion in Microbiology, 2015, 26, 109-115.                                                                                                                        | 5.1  | 21        |
| 118 | Getting the flu: 5 key facts about influenza virus evolution. PLoS Pathogens, 2017, 13, e1006450.                                                                                                                   | 4.7  | 20        |
| 119 | Pyruvate produced by Brugia spp. via glycolysis is essential for maintaining the mutualistic<br>association between the parasite and its endosymbiont, Wolbachia. PLoS Pathogens, 2019, 15, e1008085.               | 4.7  | 20        |
| 120 | Age-Related Pathology Associated with H1N1 A/California/07/2009 Influenza Virus Infection. American<br>Journal of Pathology, 2019, 189, 2389-2399.                                                                  | 3.8  | 19        |
| 121 | iGenomics: Comprehensive DNA sequence analysis on your Smartphone. GigaScience, 2020, 9, .                                                                                                                          | 6.4  | 19        |
| 122 | Accurate virus identification with interpretable Raman signatures by machine learning. Proceedings of the United States of America, 2022, 119, .                                                                    | 7.1  | 19        |
| 123 | Mechanisms of HTLV-1 transformation. Frontiers in Bioscience - Landmark, 2004, 9, 2347.                                                                                                                             | 3.0  | 17        |
| 124 | Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 267-277. | 3.4  | 17        |
| 125 | Network inference from multimodal data: A review of approaches from infectious disease transmission. Journal of Biomedical Informatics, 2016, 64, 44-54.                                                            | 4.3  | 17        |
| 126 | Possibility and Challenges of Conversion of Current Virus Species Names to Linnaean Binomials.<br>Systematic Biology, 2016, 66, syw096.                                                                             | 5.6  | 17        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Interaction of a Wolbachia WSP-like protein with a nuclear-encoded protein of Brugia malayi.<br>International Journal for Parasitology, 2011, 41, 1053-1061.                                                                                   | 3.1 | 16        |
| 128 | A2rel: a constitutively expressed Leishmania gene linked to an amastigote-stage-specific gene1Note: The<br>sequence is also available on GenBankâ,,¢, accession number AF016403.1. Molecular and Biochemical<br>Parasitology, 1998, 93, 23-29. | 1.1 | 15        |
| 129 | Use of a multi-virus array for the study of human viral and retroviral pathogens: gene expression studies and ChIP-chip analysis. Retrovirology, 2004, 1, 10.                                                                                  | 2.0 | 15        |
| 130 | Sequences necessary for trans-splicing in transiently transfected Brugia malayi. Molecular and Biochemical Parasitology, 2007, 156, 62-73.                                                                                                     | 1.1 | 15        |
| 131 | Unseasonal Transmission of H3N2 Influenza A Virus During the Swine-Origin H1N1 Pandemic. Journal of<br>Virology, 2010, 84, 5715-5718.                                                                                                          | 3.4 | 15        |
| 132 | Development and Characterization of a Reverse-Genetics System for Influenza D Virus. Journal of Virology, 2019, 93, .                                                                                                                          | 3.4 | 15        |
| 133 | Whole Genome Analysis of Sierra Nevada Virus, a Novel Mononegavirus in the Family Nyamiviridae.<br>American Journal of Tropical Medicine and Hygiene, 2014, 91, 159-164.                                                                       | 1.4 | 14        |
| 134 | Lessons from the genomes and transcriptomes of filarial nematodes. Molecular and Biochemical Parasitology, 2017, 215, 23-29.                                                                                                                   | 1.1 | 14        |
| 135 | Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. ELife, 2020, 9, .                                                                                    | 6.0 | 14        |
| 136 | Functional analysis of putative operons in Brugia malayi. International Journal for Parasitology, 2010,<br>40, 63-71.                                                                                                                          | 3.1 | 13        |
| 137 | Nearly Complete Genome Sequence of Brugia malayi Strain FR3. Microbiology Resource<br>Announcements, 2020, 9, .                                                                                                                                | 0.6 | 13        |
| 138 | Characterization of five unclassified orthobunyaviruses (Bunyaviridae) from Africa and the Americas.<br>Journal of General Virology, 2017, 98, 2258-2266.                                                                                      | 2.9 | 13        |
| 139 | Tropheryma whipplei colonization in HIV-infected individuals is not associated with lung function or inflammation. PLoS ONE, 2018, 13, e0205065.                                                                                               | 2.5 | 12        |
| 140 | Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. Journal of Proteome Research, 2020, 19, 4486-4495.                                                                        | 3.7 | 12        |
| 141 | A virus with big ambitions. Trends in Microbiology, 2005, 13, 56-57.                                                                                                                                                                           | 7.7 | 11        |
| 142 | Integrative gene network analysis identifies key signatures, intrinsic networks and host factors for influenza virus A infections. Npj Systems Biology and Applications, 2017, 3, 35.                                                          | 3.0 | 11        |
| 143 | The role of 'omics' in the quest to eliminate human filariasis. PLoS Neglected Tropical Diseases, 2017, 11, e0005464.                                                                                                                          | 3.0 | 11        |
| 144 | Evaluation of determinants of the serological response to the quadrivalent splitâ€inactivated<br>influenza vaccine. Molecular Systems Biology, 2022, 18, e10724.                                                                               | 7.2 | 11        |

| #   | Article                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Genes encoding putative biogenic amine receptors in the parasitic nematode Brugia malayi.<br>Invertebrate Neuroscience, 2007, 7, 227-244.                                                    | 1.8  | 10        |
| 146 | Emerging and Resistant Infections. Annals of the American Thoracic Society, 2014, 11, S193-S200.                                                                                             | 3.2  | 10        |
| 147 | Evolution of Influenza B Virus in Kuala Lumpur, Malaysia, between 1995 and 2008. Journal of Virology,<br>2015, 89, 9689-9692.                                                                | 3.4  | 10        |
| 148 | New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Molecular and Cellular Proteomics, 2021, 20, 100052.                                                             | 3.8  | 10        |
| 149 | Quantifying between-Host Transmission in Influenza Virus Infections. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038422.                                                         | 6.2  | 9         |
| 150 | Mapping the evolutionary landscape of Zika virus infection in immunocompromised mice. Virus<br>Evolution, 2020, 6, veaa092.                                                                  | 4.9  | 9         |
| 151 | Genetic diversity of the 2013–14 human isolates of influenza H7N9 in China. BMC Infectious Diseases, 2015, 15, 109.                                                                          | 2.9  | 8         |
| 152 | Measuring associations between the microbiota and repeated measures of continuous clinical variables using a lasso-penalized generalized linear mixed model. BioData Mining, 2018, 11, 12.   | 4.0  | 8         |
| 153 | LdARF1 in Trafficking and Structural Maintenance of the trans-Golgi Cisternal Network in the<br>Protozoan Pathogen Leishmania donovani. Traffic, 2004, 5, 868-883.                           | 2.7  | 7         |
| 154 | Sex disparities in influenza: A multiscale network analysis. IScience, 2022, 25, 104192.                                                                                                     | 4.1  | 7         |
| 155 | Using Clinical Research Networks to Assess Severity of an Emerging Influenza Pandemic. Clinical<br>Infectious Diseases, 2018, 67, 341-349.                                                   | 5.8  | 6         |
| 156 | Detection of HHV-6B in post-mortem central nervous system tissue of a post-bone marrow transplant recipient: a multi-virus array analysis. Journal of Clinical Virology, 2006, 37, S57-S62.  | 3.1  | 5         |
| 157 | Shared data are key to beating threat from flu. Nature, 2006, 440, 605-605.                                                                                                                  | 27.8 | 5         |
| 158 | Functional analysis of microRNA activity in Brugia malayi. International Journal for Parasitology, 2015, 45, 579-583.                                                                        | 3.1  | 5         |
| 159 | ICTV Virus Taxonomy Profile: Nyamiviridae. Journal of General Virology, 2017, 98, 2914-2915.                                                                                                 | 2.9  | 5         |
| 160 | Structurally Conserved Domains between Flavivirus and Alphavirus Fusion Glycoproteins Contribute to Replication and Infectious-Virion Production. Journal of Virology, 2022, 96, JVI0177421. | 3.4  | 5         |
| 161 | Genomic and proteomic approaches for Chagas' disease: critical analysis of diagnostic methods.<br>Expert Review of Molecular Diagnostics, 2005, 5, 521-530.                                  | 3.1  | 4         |
| 162 | Analysis of transcriptional regulation of tetracycline responsive genes in Brugia malayi. Molecular<br>and Biochemical Parasitology, 2011, 180, 106-111.                                     | 1.1  | 4         |

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Large-scale sequencing and the natural history of model human RNA viruses. Future Virology, 2012, 7, 563-573.                                                                                                  | 1.8  | 4         |
| 164 | Panning for molecular gold in whipworm genomes. Nature Genetics, 2014, 46, 661-663.                                                                                                                            | 21.4 | 4         |
| 165 | Host response: Pregnancy impairs flu defences. Nature Microbiology, 2017, 2, 17077.                                                                                                                            | 13.3 | 4         |
| 166 | Quality of drinking water sources in two subâ€desert sahelian areas in northâ€western Senegal.<br>International Journal of Environmental Studies, 1993, 44, 113-130.                                           | 1.6  | 3         |
| 167 | Reply to â€~Reconciling disparate estimates of viral genetic diversity during human influenza infections'.<br>Nature Genetics, 2019, 51, 1301-1303.                                                            | 21.4 | 3         |
| 168 | A Meta-Analysis of <i>Wolbachia</i> Transcriptomics Reveals a Stage-Specific <i>Wolbachia</i><br>Transcriptional Response Shared Across Different Hosts. G3: Genes, Genomes, Genetics, 2020, 10,<br>3243-3260. | 1.8  | 3         |
| 169 | How Does Large-Scale Genomic Analysis Shape Our Understanding of COVID Variants in Real Time?. Cell Systems, 2021, 12, 109-111.                                                                                | 6.2  | 3         |
| 170 | Identification and Analysis of Ingi-Related Retroposons in the Trypanosomatid Genomes. Methods in<br>Molecular Biology, 2015, 1201, 109-122.                                                                   | 0.9  | 3         |
| 171 | Gemina: A Web-Based Epidemiology and Genomic Metadata System Designed to Identify Infectious Agents. , 2007, , 228-229.                                                                                        |      | 1         |
| 172 | A multi-reservoir model of influenza evolution. Journal of Critical Care, 2009, 24, e33-e34.                                                                                                                   | 2.2  | 0         |
| 173 | It's a small world after all—viral genomics and the global dominance of viruses. Current Opinion in<br>Virology, 2011, 1, 280-281.                                                                             | 5.4  | 0         |
| 174 | Detection of SARS-CoV2 variants by Mesa Accula. Journal of Clinical Virology, 2021, 141, 104901.                                                                                                               | 3.1  | 0         |
| 175 | The Human Lung Microbiome. , 2011, , 117-143.                                                                                                                                                                  |      | Ο         |
| 176 | Arbovirus Genomics and Metagenomics. , 2016, , 175-190.                                                                                                                                                        |      | 0         |
| 177 | CRISPR-mediated Transfection of Brugia malayi. , 2020, 14, e0008627.                                                                                                                                           |      | Ο         |
| 178 | CRISPR-mediated Transfection of Brugia malayi. , 2020, 14, e0008627.                                                                                                                                           |      | 0         |
| 179 | CRISPR-mediated Transfection of Brugia malayi. , 2020, 14, e0008627.                                                                                                                                           |      | 0         |
| 180 | CRISPR-mediated Transfection of Brugia malayi. , 2020, 14, e0008627.                                                                                                                                           |      | 0         |

| #   | Article                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------|------|-----------|
| 181 | 100-year-old pandemic flu viruses yield new genomes. Nature, 2022, 607, 244-245. | 27.8 | 0         |