Jon Waters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3120682/publications.pdf Version: 2024-02-01

ION WATERS

#	Article	IF	CITATIONS
1	Long-distance dispersal: a framework for hypothesis testing. Trends in Ecology and Evolution, 2012, 27, 47-56.	8.7	450
2	Founder takes all: density-dependent processes structure biodiversity. Trends in Ecology and Evolution, 2013, 28, 78-85.	8.7	385
3	Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3249-3253.	7.1	247
4	Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change, 2018, 8, 704-708.	18.8	220
5	Geological Dates and Molecular Rates: Fish DNA Sheds Light on Time Dependency. Molecular Biology and Evolution, 2008, 25, 624-633.	8.9	215
6	Oceanic rafting by a coastal community. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 649-655.	2.6	193
7	Goodbye Condwana? New Zealand Biogeography, Geology, and the Problem of Circularity. Systematic Biology, 2006, 55, 351-356.	5.6	188
8	Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends in Ecology and Evolution, 2012, 27, 462-471.	8.7	186
9	Circumpolar dispersal by rafting in two subantarctic kelp-dwelling crustaceans. Marine Ecology - Progress Series, 2010, 405, 221-230.	1.9	161
10	GENES MEET GEOLOGY: FISH PHYLOGEOGRAPHIC PATTERN REFLECTS ANCIENT, RATHER THAN MODERN, DRAINAGE CONNECTIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1844-1851.	2.3	158
11	Biogeography of a southern hemisphere freshwater fish: how important is marine dispersal?. Molecular Ecology, 2000, 9, 1815-1821.	3.9	150
12	Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. Journal of Biogeography, 2008, 35, 417-427.	3.0	145
13	RIVER CAPTURE, RANGE EXPANSION, AND CLADOGENESIS: THE GENETIC SIGNATURE OF FRESHWATER VICARIANCE. Evolution; International Journal of Organic Evolution, 2006, 60, 1038-1049.	2.3	132
14	Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evolutionary Biology, 2010, 10, 203.	3.2	121
15	Molecular Phylogenetics and Biogeography of Galaxiid Fishes (Osteichthyes: Galaxiidae): Dispersal, Vicariance, and the Position of Lepidogalaxias salamandroides. Systematic Biology, 2000, 49, 777-795.	5.6	120
16	Transverse Alpine Speciation Driven by Glaciation. Trends in Ecology and Evolution, 2016, 31, 916-926.	8.7	116
17	Phylogeographical disjunction in abundant high-dispersal littoral gastropods. Molecular Ecology, 2005, 14, 2789-2802.	3.9	105
18	CLADOGENESIS AND LOSS OF THE MARINE LIFE-HISTORY PHASE IN FRESHWATER GALAXIID FISHES (OSMERIFORMES: GALAXIIDAE). Evolution; International Journal of Organic Evolution, 2001, 55, 587.	2.3	104

#	Article	IF	CITATIONS
19	Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow?. Molecular Ecology, 2004, 13, 2797-2806.	3.9	95
20	Relict or colonizer? Extinction and range expansion of penguins in southern New Zealand. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 815-821.	2.6	94
21	An empirical test of freshwater vicariance via river capture. Molecular Ecology, 2007, 16, 1883-1895.	3.9	93
22	Out of Africa: The Slow Train to Australasia. Systematic Biology, 2004, 53, 18-24.	5.6	92
23	DOES FISH ECOLOGY PREDICT DISPERSAL ACROSS A RIVER DRAINAGE DIVIDE?. Evolution; International Journal of Organic Evolution, 2008, 62, 1484-1499.	2.3	90
24	Competitive exclusion: phylogeography's â€~elephant in the room'?. Molecular Ecology, 2011, 20, 4388-4394.	3.9	90
25	Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both?. Diversity and Distributions, 2008, 14, 692-700.	4.1	86
26	Extreme Intraspecific Mitochondrial DNA Sequence Divergence inGalaxias maculatus(Osteichthys:) Tj ETQq0 0 (Evolution, 1999, 11, 1-12.	D rgBT /Ove 2.7	erlock 10 Tf 5 84
27	Marine biogeography of southern Australia: phylogeographical structure in a temperate sea-star. Journal of Biogeography, 2003, 30, 1787-1796.	3.0	84
28	Mitochondrial DNA phylogenetics of the Galaxias vulgaris complex from South Island, New Zealand: rapid radiation of a species flock. Journal of Fish Biology, 2001, 58, 1166-1180.	1.6	75
29	Marine dispersal as a preâ€requisite for Gondwanan vicariance among elements of the galaxiid fish fauna. Journal of Biogeography, 2012, 39, 306-321.	3.0	75
30	Across the Southern Alps by river capture? Freshwater fish phylogeography in South Island, New Zealand. Molecular Ecology, 2000, 9, 1577-1582.	3.9	74
31	Rapid biological speciation driven by tectonic evolution in New Zealand. Nature Geoscience, 2016, 9, 140-144.	12.9	74
32	Gene Trees versus Species Trees: Reassessing Life-History Evolution in a Freshwater Fish Radiation. Systematic Biology, 2010, 59, 504-517.	5.6	72
33	Do insects lose flight before they lose their wings? Population genetic structure in subalpine stoneflies. Molecular Ecology, 2009, 18, 4073-4087.	3.9	70
34	GENETIC AND MORPHOLOGICAL ANALYSES OF THE SOUTHERN BULL KELP <i>DURVILLAEA ANTARCTICA</i> (PHAEOPHYCEAE: DURVILLAEALES) IN NEW ZEALAND REVEAL CRYPTIC SPECIES ¹ . Journal of Phycology, 2009, 45, 436-443.	2.3	68
35	Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima : microsatellites and mtDNA. Journal of Fish Biology, 2000, 56, 622-636.	1.6	66
36	A time-calibrated phylogeny of southern hemisphere stoneflies: Testing for Gondwanan origins. Molecular Phylogenetics and Evolution, 2016, 96, 150-160.	2.7	66

#	Article	IF	CITATIONS
37	Geological Dates and Molecular Rates: Rapid Divergence of Rivers and Their Biotas. Systematic Biology, 2007, 56, 271-282.	5.6	63
38	Genetic Affinities between Trans-Oceanic Populations of Non-Buoyant Macroalgae in the High Latitudes of the Southern Hemisphere. PLoS ONE, 2013, 8, e69138.	2.5	63
39	Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation?. Molecular Phylogenetics and Evolution, 2004, 32, 236-245.	2.7	62
40	Priority effects can lead to underestimation of dispersal and invasion potential. Biological Invasions, 2015, 17, 1-8.	2.4	62
41	Australia's marine biogeography revisited: Back to the future?. Austral Ecology, 2010, 35, 988-992.	1.5	60
42	Glacial oceanographic contrasts explain phylogeography of Australian bull kelp. Molecular Ecology, 2009, 18, 2287-2296.	3.9	58
43	Swimming against the current: genetic structure, host mobility and the drift paradox in trematode parasites. Molecular Ecology, 2012, 21, 207-217.	3.9	58
44	Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Molecular Ecology, 2010, 19, 4572-4580.	3.9	57
45	Marine biogeographic disjunction in central New Zealand. Marine Biology, 2005, 147, 1045-1052.	1.5	56
46	Conservation status of New Zealand freshwater fish, 2009. New Zealand Journal of Marine and Freshwater Research, 2010, 44, 271-287.	2.0	56
47	Transoceanic genetic similarities of kelpâ€associated sea slug populations: longâ€distance dispersal via rafting?. Journal of Biogeography, 2014, 41, 2357-2370.	3.0	56
48	Passive rafting is a powerful driver of transoceanic gene flow. Biology Letters, 2013, 9, 20120821.	2.3	55
49	Dispersal Reduction: Causes, Genomic Mechanisms, and Evolutionary Consequences. Trends in Ecology and Evolution, 2020, 35, 512-522.	8.7	55
50	Extinction and recolonization of coastal megafauna following human arrival in New Zealand. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140097.	2.6	53
51	Late Quaternary river drainage and fish evolution, Southland, New Zealand. Geomorphology, 2007, 84, 98-110.	2.6	51
52	Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Molecular Ecology, 2006, 16, 431-439.	3.9	50
53	ONSET OF GLACIATION DROVE SIMULTANEOUS VICARIANT ISOLATION OF ALPINE INSECTS IN NEW ZEALAND. Evolution; International Journal of Organic Evolution, 2010, 64, 2033-43.	2.3	49
54	The imprecision of heterozygosity-fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Molecular Ecology, 2011, 20, 67-79.	3.9	48

#	Article	IF	CITATIONS
55	Genome-wide SNPs reveal fine-scale differentiation among wingless alpine stonefly populations and introgression between winged and wingless forms. Evolution; International Journal of Organic Evolution, 2016, 70, 38-47.	2.3	48
56	Phylogenetic Placement of Retropinnid Fishes: Data Set Incongruence Can Be Reduced by Using Asymmetric Character State Transformation Costs. Systematic Biology, 2002, 51, 432-449.	5.6	47
57	Genetic diversity in New Zealand Galaxias vulgaris sensu lato (Teleostei: Osmeriformes: Galaxiidae): a test of a biogeographic hypothesis. Journal of Biogeography, 2008, 28, 59-67.	3.0	47
58	Marine biogeographical structure in two highly dispersive gastropods: implications for trans-Tasman dispersal. Journal of Biogeography, 2007, 34, 678-687.	3.0	46
59	Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Molecular Phylogenetics and Evolution, 2010, 57, 1301-1311.	2.7	45
60	Multilocus assignment analyses reveal multiple units and rare migration events in the recently expanded yellowâ€eyed penguin (<i>Megadyptes antipodes</i>). Molecular Ecology, 2009, 18, 2390-2400.	3.9	42
61	Does wing size shape insect biogeography? Evidence from a diverse regional stonefly assemblage. Global Ecology and Biogeography, 2017, 26, 93-101.	5.8	42
62	A molecular and morphological revision of genera of Asterinidae (Echinodermata: Asteroidea). Memoirs of Museum Victoria, 2004, 61, 1-40.	0.6	41
63	Intraspecific phylogeography of the Cape galaxias from South Africa: evidence from mitochondrial DNA sequences. Journal of Fish Biology, 1997, 50, 1329-1338.	1.6	40
64	Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand. Biological Journal of the Linnean Society, 2001, 73, 287-298.	1.6	40
65	On-shelf larval retention limits population connectivity in a coastal broadcast spawner. Marine Ecology - Progress Series, 2015, 532, 1-12.	1.9	40
66	The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds. PLoS ONE, 2013, 8, e80168.	2.5	39
67	Evaluating Genetic Diversity Associated with Propagation-Assisted Restoration of American Shad. Conservation Biology, 2000, 14, 294-303.	4.7	37
68	Geological subsidence, river capture, and cladogenesis of galaxiid fish lineages in central New Zealand. Biological Journal of the Linnean Society, 2006, 88, 367-376.	1.6	37
69	Genetic ages for Quaternary topographic evolution: A new dating tool. Geology, 2008, 36, 19.	4.4	37
70	Mitogenomes Uncover Extinct Penguin Taxa and Reveal Island Formation as a Key Driver of Speciation. Molecular Biology and Evolution, 2019, 36, 784-797.	8.9	36
71	Molecular Phylogeny and Biogeography of the Tasmanian and New Zealand Mudfishes (Salmoniformes) Tj ETO	Qq1 1.0,784: 1.0	314,ggBT /Ov
72	Phylogenetics of the australasian mudfishes: Evolution of an eel-like body plan. Molecular	2.7	35

Phylogenetics and Evolution, 2005, 37, 417-425.

#	Article	IF	CITATIONS
73	Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. International Journal for Parasitology, 2007, 37, 351-357.	3.1	35
74	Biogeography Off the Tracks. Systematic Biology, 2013, 62, 494-498.	5.6	35
75	Receding ice drove parallel expansions in Southern Ocean penguins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26690-26696.	7.1	35
76	Niche partitioning and the effect of interspecific competition on microhabitat use by two sympatric galaxiid stream fishes. Freshwater Biology, 2010, 55, 967-982.	2.4	34
77	Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1057-1064.	2.6	34
78	Coalescent Modelling Suggests Recent Secondary-Contact of Cryptic Penguin Species. PLoS ONE, 2015, 10, e0144966.	2.5	33
79	Hydroelectric development and translocation ofGalaxias brevipinnis: a cloud at the end of the tunnel?. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 49-56.	1.4	32
80	Taxonomy and nomenclature of black nerites (Gastropoda:Neritimorpha:Nerita) from the South Pacific. Invertebrate Systematics, 2007, 21, 229.	1.3	32
81	Oceanography promotes self-recruitment in a planktonic larval disperser. Scientific Reports, 2016, 6, 34205.	3.3	32
82	Radiocarbon-dating and ancient DNA reveal rapid replacement of extinct prehistoric penguins. Quaternary Science Reviews, 2015, 112, 59-65.	3.0	31
83	Mitochondrial DNA variation suggests river capture as a source of vicariance in Gadopsis bispinosus (Pisces: Gadopsidae). Journal of Fish Biology, 1994, 44, 549-551.	1.6	29
84	Evolution of biological dispersal corridors through a tectonically active mountain range in New Zealand. Journal of Biogeography, 2008, 35, 1790-1802.	3.0	29
85	Rafting dispersal constrained by an oceanographic boundary. Marine Ecology - Progress Series, 2014, 501, 297-302.	1.9	29
86	Genetic analyses of rafted macroalgae reveal regional oceanographic connectivity patterns. Journal of Biogeography, 2015, 42, 1319-1326.	3.0	29
87	River Capture and Freshwater Biological Evolution: A Review of Galaxiid Fish Vicariance. Diversity, 2020, 12, 216.	1.7	29
88	<i>Durvillaea poha</i> sp. nov. (Fucales, Phaeophyceae): a buoyant southern bull-kelp species endemic to New Zealand. Phycologia, 2012, 51, 151-156.	1.4	27
89	Geological controls on palaeo-environmental change in a tectonic rain shadow, southern New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 370, 103-116.	2.3	27
90	Ecological gradients drive insect wing loss and speciation: The role of the alpine treeline. Molecular Ecology, 2019, 28, 3141-3150.	3.9	27

#	Article	IF	CITATIONS
91	Tectonic controls on the evolution of the Clutha River catchment, New Zealand. New Zealand Journal of Geology, and Geophysics, 2012, 55, 345-359.	1.8	26
92	An overview of Australia's temperate marine phylogeography, with new evidence from highâ€dispersal gastropods. Journal of Biogeography, 2017, 44, 217-229.	3.0	26
93	Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Molecular Ecology, 2021, 30, 4162-4172.	3.9	26
94	Rafting rocks reveal marine biological dispersal: A case study using clasts from beach-cast macroalgal holdfasts. Estuarine, Coastal and Shelf Science, 2011, 95, 388-394.	2.1	24
95	The importance of replicating genomic analyses to verify phylogenetic signal for recently evolved lineages. Molecular Ecology, 2016, 25, 3683-3695.	3.9	24
96	Does wing reduction influence the relationship between altitude and insect body size? A case study using New Zealand's diverse stonefly fauna. Ecology and Evolution, 2018, 8, 953-960.	1.9	24
97	How disturbance and dispersal influence intraspecific structure. Journal of Ecology, 2018, 106, 1298-1306.	4.0	24
98	A new species ofGalaxias(Teleostei: Galaxiidae) from the Mackenzie Basin, New Zealand. Journal of the Royal Society of New Zealand, 2003, 33, 675-691.	1.9	23
99	Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: the importance of local recruitment and habitat requirements. Marine and Freshwater Research, 2017, 68, 2315.	1.3	23
100	Crossing the front: contrasting storm-forced dispersal dynamics revealed by biological, geological and genetic analysis of beach-cast kelp. Journal of the Royal Society Interface, 2018, 15, 20180046.	3.4	23
101	A new longjaw galaxias species (Teleostei: Galaxiidae) from the Kauru River, North Otago, New Zealand. New Zealand Journal of Zoology, 2002, 29, 41-52.	1.1	22
102	Evolutionary consequences of microhabitat: population-genetic structuring in kelp- vs. rock-associated chitons. Molecular Ecology, 2011, 20, 4915-4924.	3.9	22
103	Geographically contrasting biodiversity reductions in a widespread New Zealand seabird. Molecular Ecology, 2015, 24, 4605-4616.	3.9	22
104	Invader or resident? Ancient-DNA reveals rapid species turnover in New Zealand little penguins. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152879.	2.6	22
105	Geology shapes biogeography: Quaternary river-capture explains New Zealand's biologically â€~composite' Taieri River. Quaternary Science Reviews, 2015, 120, 47-56.	3.0	21
106	Managing shifting species: Ancient DNA reveals conservation conundrums in a dynamic world. BioEssays, 2016, 38, 1177-1184.	2.5	21
107	More than the eye can see: Genomic insights into the drivers of genetic differentiation in Royal/Macaroni penguins across the Southern Ocean. Molecular Phylogenetics and Evolution, 2019, 139, 106563.	2.7	21
108	Genomics detects population structure within and between ocean basins in a circumpolar seabird: The whiteâ€chinned petrel. Molecular Ecology, 2019, 28, 4552-4572.	3.9	21

#	Article	IF	CITATIONS
109	Is the southern crab <i>Halicarcinus planatus</i> (Fabricius, 1775) the next invader of Antarctica?. Global Change Biology, 2021, 27, 3487-3504.	9.5	20
110	Comparison of populationâ€genetic structuring in congeneric kelp―versus rockâ€associated snails: a test of a dispersalâ€byâ€rafting hypothesis. Ecology and Evolution, 2011, 1, 169-180.	1.9	19
111	Can novel genetic analyses help to identify lowâ€dispersal marine invasive species?. Ecology and Evolution, 2014, 4, 2848-2866.	1.9	19
112	Ancient DNA and morphometric analysis reveal extinction and replacement of New Zealand's unique black swans. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170876.	2.6	19
113	Geological and biological evidence for regional drainage reversal during lateral tectonic transport, Marlborough, New Zealand. Journal of the Geological Society, 2007, 164, 785-793.	2.1	19
114	Did interaction between human pressure and Little Ice Age drive biological turnover in New Zealand?. Journal of Biogeography, 2017, 44, 1481-1490.	3.0	18
115	Comparative transcriptomic analysis of a wing-dimorphic stonefly reveals candidate wing loss genes. EvoDevo, 2019, 10, 21.	3.2	18
116	Genomics Reveals Widespread Ecological Speciation in Flightless Insects. Systematic Biology, 2021, 70, 863-876.	5.6	18
117	Description of a new species of <i>Patiriella</i> from New Zealand, and review of <i>Patiriella regularis</i> (Echinodermata, Asteroidea) based on morphological and molecular data. Journal of the Royal Society of New Zealand, 2002, 32, 697-711.	1.9	17
118	Genetic and morphological evidence for two species of <i>Leucocarbo</i> shag (Aves, Pelecaniformes,) Tj ETQq0 Society, 2016, 177, 676-694.	0 0 rgBT / 2.3	Overlock 10 T 17
119	Genotyping-by-sequencing supports a genetic basis for wing reduction in an alpine New Zealand stonefly. Scientific Reports, 2018, 8, 16275.	3.3	17
120	Morphological and genetic analysis of <i>Galaxias</i> â€~southern' and <i>G. gollumoides:</i> interspecific differentiation and intraspecific structuring. Journal of the Royal Society of New Zealand, 2009, 39, 43-62.	1.9	16
121	Temporal genetic samples indicate small effective population size of the endangered yellow-eyed penguin. Conservation Genetics, 2010, 11, 539-546.	1.5	16
122	Evolution of the Taieri River catchment, East Otago, New Zealand. New Zealand Journal of Geology, and Geophysics, 2016, 59, 257-273.	1.8	16
123	A morphological and phylogenetic investigation into divergence among sympatric Australian southern bull kelps (Durvillaea potatorum and D. amatheiae sp. nov.). Molecular Phylogenetics and Evolution, 2017, 107, 630-643.	2.7	16
124	Phylogenetic divergence of island biotas: Molecular dates, extinction, and "relict―lineages. Molecular Ecology, 2019, 28, 4354-4362.	3.9	16
125	Molecular systematics of some Indo-Pacific asterinids (Echinodermata, Asteroidea): does taxonomy reflect phylogeny?. Molecular Phylogenetics and Evolution, 2004, 30, 872-878.	2.7	15
126	The significance of past interdrainage connectivity for studies of diversity, distribution and movement of freshwaterâ€limited taxa within a catchment. Journal of Biogeography, 2014, 41, 536-547.	3.0	15

#	Article	IF	CITATIONS
127	Pre-human New Zealand sea lion (<i>Phocarctos hookeri</i>) rookeries on mainland New Zealand. Journal of the Royal Society of New Zealand, 2014, 44, 1-16.	1.9	15
128	Humanâ€mediated extirpation of the unique Chatham Islands sea lion and implications for the conservation management of remaining New Zealand sea lion populations. Molecular Ecology, 2016, 25, 3950-3961.	3.9	15
129	Fineâ€scale habitat preferences influence withinâ€river population connectivity: a caseâ€study using two sympatric <scp>N</scp> ew <scp>Z</scp> ealand <i><scp>G</scp>alaxias</i> fish species. Freshwater Biology, 2016, 61, 51-56.	2.4	15
130	Myth or relict: Does ancient DNA detect the enigmatic Upland seal?. Molecular Phylogenetics and Evolution, 2016, 97, 101-106.	2.7	15
131	Insect wing loss is tightly linked to the treeline: evidence from a diverse stonefly assemblage. Ecography, 2019, 42, 811-813.	4.5	15
132	Strong Phylogeographic Structure in a Sedentary Seabird, the Stewart Island Shag (Leucocarbo) Tj ETQq0 0 0 rgB	T /Overloo 2.5	ck <u>10</u> Tf 50 5
133	A molecular and morphological review of the asterinid, Patiriella gunnii (Gray) (Echinodermata:) Tj ETQq1 1 0.784	314 rgBT 0.6	/Overlock 10
134	Phylogenetic relationships in a small group of diminutive galaxiid fishes and the evolution of sexual dimorphism. Journal of the Royal Society of New Zealand, 2004, 34, 23-57.	1.9	14
135	Evolution and biogeography of New Zealand's longjaw galaxiids (Osmeriformes: Galaxiidae): the genetic effects of glaciation and mountain building. Freshwater Biology, 2008, 53, 521-534.	2.4	14
136	Isolation and characterization of microsatellite loci from the endangered New Zealand takahe (Gruiformes; Rallidae; <i>Porphyrio hochstetteri</i>). Molecular Ecology Resources, 2008, 8, 884-886.	4.8	14
137	The linking of plate tectonics and evolutionary divergence. Current Biology, 2013, 23, R603-R605.	3.9	14
138	Does coastal topography constrain marine biogeography at an oceanographic interface?. Marine and Freshwater Research, 2014, 65, 969.	1.3	14
139	Speciation, range contraction and extinction in the endemic New Zealand King Shag complex. Molecular Phylogenetics and Evolution, 2017, 115, 197-209.	2.7	14
140	An integrated ecological, genetic and geological assessment of long-distance dispersal by invertebrates on kelp rafts. Frontiers of Biogeography, 2018, 10, .	1.8	14
141	The lasting biological signature of Pliocene tectonics: Reviewing the reâ€routing of Australia's largest river drainage system. Journal of Biogeography, 2019, 46, 1494-1503.	3.0	14
142	Does migration promote or inhibit diversification? A case study involving the dominant radiation of temperate Southern Hemisphere freshwater fishes. Evolution; International Journal of Organic Evolution, 2020, 74, 1954-1965.	2.3	14
143	Cyclone-driven marine rafting: storms drive rapid dispersal of buoyant kelp rafts. Marine Ecology - Progress Series, 2018, 602, 77-85.	1.9	14
144	Withinâ€river genetic connectivity patterns reflect contrasting geomorphology. Journal of Biogeography, 2015, 42, 2452-2460.	3.0	13

#	Article	IF	CITATIONS
145	Testing for seasonality in alpine streams: How does altitude affect freshwater insect life cycles?. Freshwater Biology, 2018, 63, 483-491.	2.4	13
146	Biological evidence constraining river drainage evolution across a subduction-transcurrent plate boundary transition, New Zealand. Geomorphology, 2019, 336, 119-132.	2.6	13
147	Plio-Pleistocene environmental changes shape present day phylogeography of New Zealand's southern beeches (Nothofagaceae). New Zealand Journal of Botany, 2021, 59, 55-71.	1.1	13
148	Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Current Biology, 2022, 32, 3154-3160.e3.	3.9	13
149	SNP analyses reveal a diverse pool of potential colonists to earthquakeâ€uplifted coastlines. Molecular Ecology, 2020, 29, 149-159.	3.9	12
150	The genomic footprint of coastal earthquake uplift. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200712.	2.6	12
151	Anthropogenic evolution in an insect wing polymorphism following widespread deforestation. Biology Letters, 2021, 17, 20210069.	2.3	12
152	Characterization of microsatellite loci from a New Zealand freshwater fish (Galaxias vulgaris) and their potential for analysis of hybridization in Galaxiidae. Molecular Ecology, 1999, 8, 1080-1082.	3.9	11
153	Microsatellite loci for the New Zealand trematode Maritrema novaezealandensis. Molecular Ecology Notes, 2006, 6, 1042-1044.	1.7	11
154	Transoceanic dispersal and cryptic diversity in a cosmopolitan rafting nudibranch. Invertebrate Systematics, 2016, 30, 290.	1.3	11
155	Multivariate skeletal analyses support a taxonomic distinction between New Zealand and Australian <i>Eudyptula</i> penguins (Sphenisciformes: Spheniscidae). Emu, 2017, 117, 276-283.	0.6	11
156	Kelp DNA records late Holocene paleoseismic uplift of coastline, southeastern New Zealand. Earth and Planetary Science Letters, 2019, 520, 18-25.	4.4	11
157	CLADOGENESIS AND LOSS OF THE MARINE LIFE-HISTORY PHASE IN FRESHWATER GALAXIID FISHES (OSMERIFORMES: GALAXIIDAE). Evolution; International Journal of Organic Evolution, 2007, 55, 587-597.	2.3	10
158	Microsatellite loci for the progenetic trematode,Coitocaecum parvum(Opecoelidae). Molecular Ecology Notes, 2007, 7, 694-696.	1.7	10
159	Algal Parasite <i>Herpodiscus durvillaeae</i> (Phaeophyceae: Sphacelariales) Inferred to have Traversed the Pacific Ocean with its Buoyant Host. Journal of Phycology, 2013, 49, 202-206.	2.3	10
160	Biological memory of the first Pleistocene glaciation in New Zealand. Geology, 2017, 45, 595-598.	4.4	10
161	GENES MEET GEOLOGY: FISH PHYLOGEOGRAPHIC PATTERN REFLECTS ANCIENT, RATHER THAN MODERN, DRAINAGE CONNECTIONS. Evolution; International Journal of Organic Evolution, 2001, 55, 1844.	2.3	9

162 Isolation and characterization of microsatellite loci from the yellow $\hat{a} \in e$ yed penguin (<i>Megadyptes) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
163	Systematics and phylogeny of a new cryptic species of Diloma Philippi (Mollusca: Gastropoda:) Tj ETQq1 1 0.7843 Invertebrate Systematics, 2009, 23, 19.	814 rgBT / 1.3	Overlock 10 9
164	Morphological and ancient DNA analyses reveal inaccurate labels on two of Buller's bird specimens. Journal of the Royal Society of New Zealand, 2014, 44, 163-169.	1.9	9
165	Ancient DNA reveals that the †extinct' Hunter Island penguin (Tasidyptes hunteri) is not a distinct taxon. Zoological Journal of the Linnean Society, 2018, 182, 459-464.	2.3	9
166	Rafting dispersal in a brooding southern sea star (Asteroidea : Anasterias). Invertebrate Systematics, 2018, 32, 253.	1.3	9
167	Northward range extension for <i>Durvillaea poha</i> bull kelp: Response to tectonic disturbance?. Journal of Phycology, 2021, 57, 1411-1418.	2.3	9
168	GENETIC STRUCTURING OF RELICT POPULATIONS OF GAPPER'S RED-BACKED VOLE (CLETHRIONOMYS) TJ ETQqC	000 rgBT 1.3 rgBT	/Qverlock 10
169	Drainage reorientation in Marlborough Sounds, New Zealand, during the Last Interglacial. New Zealand Journal of Geology, and Geophysics, 2007, 50, 13-20.	1.8	8
170	Large kelp-rafted rocks as potential dropstones in the Southern Ocean. Marine Geology, 2017, 391, 13-19.	2.1	8
171	Trans-Tasman genetic connectivity in the intertidal air-breathing slug Onchidella nigricans. Marine Ecology - Progress Series, 2016, 562, 93-100.	1.9	8
172	Genetic impacts of physical disturbance processes in coastal marine ecosystems. Journal of Biogeography, 2022, 49, 1877-1890.	3.0	8
173	Ancient DNA of crested penguins: Testing for temporal genetic shifts in the world's most diverse penguin clade. Molecular Phylogenetics and Evolution, 2019, 131, 72-79.	2.7	7
174	Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand. Biological Journal of the Linnean	1.6	7

174	Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand. Biological Journal of the Linnean Society, 2001, 73, 287-298.	1.6	7
175	Parallel recolonizations generate distinct genomic sectors in kelp following highâ€magnitude earthquake disturbance. Molecular Ecology, 2022, 31, 4818-4831.	3.9	7
176	RIVER CAPTURE, RANGE EXPANSION, AND CLADOGENESIS: THE GENETIC SIGNATURE OF FRESHWATER VICARIANCE. Evolution; International Journal of Organic Evolution, 2006, 60, 1038.	2.3	6
177	Long distance kelp-rafting of rocks around southern New Zealand. New Zealand Journal of Geology, and Geophysics, 2018, 61, 428-443.	1.8	6
178	Hitchhiking consequences for genetic and morphological patterns: the influence of kelp-rafting on a brooding chiton. Biological Journal of the Linnean Society, 2020, 130, 756-770.	1.6	6
179	The population genetic structure of the urchin Centrostephanus rodgersii in New ZealandÂwith links to Australia. Marine Biology, 2021, 168, 1.	1.5	6
180	Genomic signatures of parallel alpine adaptation in recentlyâ€evolved flightless insects. Molecular Ecology, 2021, 30, 6677-6686.	3.9	6

#	Article	IF	CITATIONS
181	Persisting in a glaciated landscape: Pleistocene microrefugia evidenced by the tree wētĕ <i>Hemideina maori</i> in central South Island, New Zealand. Journal of Biogeography, 2020, 47, 2518-2531.	3.0	6
182	Late Holocene uplift of a coastal terrace near the Akatore Fault, southern New Zealand. New Zealand Journal of Geology, and Geophysics, 2021, 64, 542-557.	1.8	5
183	Evidence for aposematism in a southern hemisphere stonefly family (Plecoptera: Austroperlidae). Austral Entomology, 2021, 60, 267-275.	1.4	5
184	Preliminary genetic analysis of koaro <i>(Galaxias brevipinnis)</i> in New Zealand lakes: Evidence for allopatric differentiation among lakes but little population subdivision within lakes. Journal of the Royal Society of New Zealand, 2003, 33, 591-600.	1.9	4
185	Shared patterns of species turnover between seaweeds and seed plants break down at increasing distances from the sea. Ecology and Evolution, 2014, 4, 27-34.	1.9	4
186	<i>Zelandoperla maungatuaensis</i> sp. n. (Plecoptera: Gripopterygidae), a new flightless stonefly species from Otago, New Zealand. New Zealand Journal of Zoology, 2020, 47, 141-147.	1.1	4
187	Taxonomy based on limited genomic markers may underestimate species diversity of rockhopper penguins and threaten their conservation. Diversity and Distributions, 2021, 27, 2277-2296.	4.1	4
188	Mitochondrial DNA variation suggests river capture as a source of vicariance in Gadopsis bispinosus (Pisces: Gadopsidae). Journal of Fish Biology, 1994, 44, 549-551.	1.6	4
189	Homing behaviour facilitates subtle genetic differentiation among river populations of Alosa sapidissima: microsatellites and mtDNA. Journal of Fish Biology, 2000, 56, 622-636.	1.6	4
190	Concordant phylogeographic responses to largeâ€scale coastal disturbance in intertidal macroalgae and their epibiota. Molecular Ecology, 2021, 31, 646.	3.9	4
191	Molecular phylogeny and biogeography of the Tasmanian and New Zealand mudfishes (Salmoniformes :) Tj ETQq1	1.8 ^{.7843}	14 rgBT /0
192	Historical Bioegeography: An Introduction.—J. V. Crisci, L. Katinas, and P. Posadas. 2003. Harvard University Press, Cambridge MA. 264 pp. ISBN 0–674–01059–0. \$45.00 hardcover Systematic Biology, 2005, 54, 338-340.	5.6	3
193	Development and characterisation of 20 novel microsatellite markers for the little blue penguin (Eudyptula minor) using next-generation sequencing. Conservation Genetics Resources, 2015, 7, 143-145.	0.8	3
194	Archival DNA reveals cryptic biodiversity within the Spotted Shag (Phalacrocorax punctatus) from New Zealand. Condor, 2019, 121, .	1.6	3
195	Life history plasticity affects the population structure and distribution of the widespread migratory fish Galaxias brevipinnis. Marine and Freshwater Research, 2021, 72, 542.	1.3	3
196	Does assortative mating contribute to reproductive isolation among sympatric ecotypes of the wingâ€dimorphic stonefly <i>Zelandoperla fenestrata</i> (Plecoptera: Gripopterygidae)?. Austral Entomology, 2021, 60, 571-577.	1.4	3
197	Mitochondrial DNA phylogenetics of the Galaxias vulgaris complex from South Island, New Zealand: rapid radiation of a species flock. Journal of Fish Biology, 2001, 58, 1166-1180.	1.6	3
198	Rapid radiation of Southern Ocean shags in response to receding sea ice. Journal of Biogeography, 2022, 49, 942-953.	3.0	3

#	Article	IF	CITATIONS
199	Reduced olfactory acuity in recently flightless insects suggests rapid regressive evolution. Bmc Ecology and Evolution, 2022, 22, 50.	1.6	3
200	Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect. Insect Systematics and Diversity, 2022, 6, .	1.7	3
201	The founder space race: a reply to Buckley et al Trends in Ecology and Evolution, 2013, 28, 190-191.	8.7	2
202	First complete mitochondrial genome of a Gripopterygid stonefly from the sub-order Antarctoperlaria: Zelandoperla fenestrata. Mitochondrial DNA Part B: Resources, 2019, 4, 886-888.	0.4	2
203	Phylogeography reveals a North Island range extension for New Zealand's only sexually wing-dimorphic stonefly (Stenoperla helsoni). New Zealand Journal of Zoology, 2019, 46, 253-260.	1.1	2
204	Does elevation influence mayfly emergence timing? A case study using New Zealand's endemic ephemeropteran fauna. Ecological Entomology, 2020, 45, 756-760.	2.2	2
205	The importance of recognising and conserving biological diversity: a reply to Dussex et al. (2018). , 2018, 42, .		2
206	Malte C. Ebach and Raymond S. Tangney (editors), Biogeography in a Changing World. Systematic Biology, 2007, 56, 871-873.	5.6	1
207	Intraspecific phylogeography of the Cape galaxias from South Africa: evidence from mitochondrial DNA sequences. Journal of Fish Biology, 1997, 50, 1329-1338.	1.6	1
208	Reply to Chisholm (2011), Conservation status of New Zealand freshwater fish, 2009; Allibone et al.(2010). New Zealand Journal of Marine and Freshwater Research, 2011, 45, 303-305.	2.0	0
209	DNA samples from wild animal populations as a byproduct of PIT tagging. Conservation Genetics Resources, 2015, 7, 631-633.	0.8	0
210	Native or not? Ancient DNA rejects persistence of New Zealand's endemic black swan: A reply to Montano etÂal Evolutionary Applications, 2018, 11, 376-377.	3.1	0
211	Seaweed rafts. Current Biology, 2021, 31, R1510-R1511.	3.9	0