
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3119404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-photoresponsive triphenylethylene derivatives with photochromism, photodeformation and room temperature phosphorescence. Materials Horizons, 2022, 9, 368-375.	12.2	26
2	A perylene diimide dimer-based electron transporting material with an A–D–A structure for efficient inverted perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 2544-2550.	5.5	12
3	Recent progress in open-shell organic conjugated materials and their aggregated states. Journal of Materials Chemistry C, 2022, 10, 2431-2449.	5.5	23
4	Organic microporous crystals driven by pure C–Hâ⊄Ï€ interactions with vapor-induced crystal-to-crystal transformations. Materials Horizons, 2022, 9, 731-739.	12.2	14
5	Room-temperature phosphorescence from metal-free polymer-based materials. Cell Reports Physical Science, 2022, 3, 100663.	5.6	41
6	Light emission of organic luminogens: Generation, mechanism and application. Progress in Materials Science, 2022, 125, 100914.	32.8	69
7	Completely aqueous processable stimulus responsive organic room temperature phosphorescence materials with tunable afterglow color. Nature Communications, 2022, 13, 347.	12.8	199
8	Organometallic Complexes for Optoelectronic Applications. , 2022, , .		0
9	An asymmetric 2,3-fluoranthene imide building block for regioregular semiconductors with aggregation-induced emission properties. Chemical Science, 2022, 13, 996-1002.	7.4	10
10	Room-Temperature Phosphorescence of Nicotinic Acid and Isonicotinic Acid: Efficient Intermolecular Hydrogen-Bond Interaction in Molecular Array. Journal of Physical Chemistry Letters, 2022, 13, 1652-1659.	4.6	9
11	Stimulus-responsive room temperature phosphorescence materials with full-color tunability from pure organic amorphous polymers. Science Advances, 2022, 8, eabl8392.	10.3	143
12	Responsive hyperbranched poly(formyl-1,2,3-triazole)s toward quadruple-modal information security protection. Science China Chemistry, 2022, 65, 771-777.	8.2	11
13	Mobile Phone Flashlightâ€Excited Red Afterglow Bioimaging. Advanced Materials, 2022, 34, e2201280.	21.0	79
14	Recent Progress in Understanding the Structural, Optoelectronic, and Photophysical Properties of Lead Based Dion–Jacobson Perovskites as Well as Their Application in Solar Cells. , 2022, 4, 891-917.		9
15	Expounding the Relationship between Molecular Conformation and Room-Temperature Phosphorescence Property by Deviation Angle. Journal of Physical Chemistry Letters, 2022, 13, 3251-3260.	4.6	9
16	Organic dyes with multi-branched structures for highly efficient photocatalytic hydrogen evolution under visible-light irradiation. Applied Catalysis B: Environmental, 2022, 309, 121257.	20.2	11
17	Electrochemical oxidative dearomatization of 2-arylthiophenes. Organic Chemistry Frontiers, 2022, 9, 2921-2925.	4.5	8
18	Tetracyanobutadienylâ€Based Nonlinear Optical Dendronized Hyperbranched Polymer Synthesized via [2+2]ACycloaddition Polymer Postfunctionalization. Macromolecular Rapid Communications, 2022, 43, e2200179.	3.9	9

#	Article	IF	CITATIONS
19	Room temperature phosphorescence achieved by aromatic/perfluoroaromatic interactions. Science China Chemistry, 2022, 65, 918-925.	8.2	41
20	Ultralong blue room-temperature phosphorescence by cycloalkyl engineering. Materials Chemistry Frontiers, 2022, 6, 1606-1614.	5.9	15
21	Electrochemical 5- <i>exo-dig</i> aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Organic and Biomolecular Chemistry, 2022, 20, 4320-4323.	2.8	4
22	Electrochemical Sulfoxidation of Thiols and Alkyl Halides. Journal of Organic Chemistry, 2022, 87, 6942-6950.	3.2	7
23	Direct demonstration of triplet excimer in purely organic room temperature phosphorescence through rational molecular design. Light: Science and Applications, 2022, 11, 142.	16.6	37
24	Molecular Uniting Set Identified Characteristic (<scp>MUSIC</scp>) of Organic Optoelectronic Material. Chinese Journal of Chemistry, 2022, 40, 2356-2370.	4.9	42
25	Achieving diversified emissive behaviors of AIE, TADF, RTP, dual-RTP and mechanoluminescence from simple organic molecules by positional isomerism. Journal of Materials Chemistry C, 2022, 10, 10009-10016.	5.5	11
26	Advances in Pure Organic Mechanoluminescence Materials. Journal of Physical Chemistry Letters, 2022, 13, 5605-5617.	4.6	23
27	Achieving enhanced ML or RTP performance: alkyl substituent effect on the fine-tuning of molecular packing. Materials Chemistry Frontiers, 2021, 5, 817-824.	5.9	21
28	Organic luminogens bearing alkyl substituents: design flexibility, adjustable molecular packing, and optimized performance. Materials Chemistry Frontiers, 2021, 5, 1525-1540.	5.9	33
29	Dopant-free dicyanofluoranthene-based hole transporting material with low cost enables efficient flexible perovskite solar cells. Nano Energy, 2021, 82, 105701.	16.0	68
30	Development of aggregated state chemistry accelerated by aggregation-induced emission. National Science Review, 2021, 8, nwaa199.	9.5	51
31	Nanoprobes with aggregation-induced emission for theranostics. Materials Chemistry Frontiers, 2021, 5, 603-626.	5.9	53
32	Precise Regulation of Distance between Associated Pyrene Units and Control of Emission Energy and Kinetics in Solid State. CCS Chemistry, 2021, 3, 274-286.	7.8	58
33	Significant Influence of Molecular Packing in Aggregates on Optoelectronic Properties. Acta Chimica Sinica, 2021, 79, 575.	1.4	19
34	A pyridinium salt with crystalline phase transformation under water vapor and reversible mechanochromic luminescent properties. Journal of Materials Chemistry C, 2021, 9, 11738-11744.	5.5	12
35	The initial attempt to reveal the emission processes of both mechanoluminescence and room temperature phosphorescence with the aid of circular dichroism in solid state. Science China Chemistry, 2021, 64, 445-451.	8.2	46
36	The Progress of Circularly Polarized Luminescence in Chiral Purely Organic Materials. Advanced Photonics Research, 2021, 2, 2000136.	3.6	51

#	Article	IF	CITATIONS
37	Merocyanine with Hole-Transporting Ability and Efficient Defect Passivation Effect for Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 869-876.	17.4	64
38	Luminous Butterflies: Rational Molecular Design to Optimize Crystal Packing for Dramatically Enhanced Roomâ€Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2001549.	7.3	23
39	Efficient Inverted Perovskite Solar Cells with Low Voltage Loss Achieved by a Pyridineâ€Based Dopantâ€Free Polymer Semiconductor. Angewandte Chemie - International Edition, 2021, 60, 7227-7233.	13.8	107
40	High Performance of Simple Organic Phosphorescence Host–Guest Materials and their Application in Timeâ€Resolved Bioimaging. Advanced Materials, 2021, 33, e2007811.	21.0	242
41	Forceâ€Induced Turnâ€On Persistent Roomâ€Temperature Phosphorescence in Purely Organic Luminogen. Angewandte Chemie, 2021, 133, 12443-12448.	2.0	24
42	Recent Process of Photo-responsive Materials with Aggregation-induced Emission. Chemical Research in Chinese Universities, 2021, 37, 598-614.	2.6	10
43	Forceâ€Induced Turnâ€On Persistent Roomâ€Temperature Phosphorescence in Purely Organic Luminogen. Angewandte Chemie - International Edition, 2021, 60, 12335-12340.	13.8	98
44	Holeâ€Transporting Molecules with Tetrabenzo[<i>a</i> , <i>c</i> , <i>g</i> , <i>i</i>]carbazole Core for Highly Efficient Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100070.	5.8	3
45	Substituent Effects in Organic Luminogens with Room Temperature Phosphorescence. ChemPhotoChem, 2021, 5, 694-701.	3.0	19
46	Different molecular conformation and packing determining mechanochromism and room-temperature phosphorescence. Science China Materials, 2021, 64, 2813-2823.	6.3	34
47	Stimulus-Responsive Room Temperature Phosphorescence Materials: Internal Mechanism, Design Strategy, and Potential Application. Accounts of Materials Research, 2021, 2, 644-654.	11.7	131
48	New Phenothiazine Derivatives That Exhibit Photoinduced Roomâ€Temperature Phosphorescence. Advanced Functional Materials, 2021, 31, 2101719.	14.9	84
49	Effects of Side Chains in Third Components on the Performance of Fused-Ring Electron-Acceptor-Based Ternary Organic Solar Cells. Energy & Fuels, 2021, 35, 19055-19060.	5.1	9
50	Aggregationâ€induced emission: Red and nearâ€infrared organic lightâ€emitting diodes. SmartMat, 2021, 2, 326-346.	10.7	88
51	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie - International Edition, 2021, 60, 20259-20263.	13.8	125
52	Diversity of Luminescent Metal Complexes in OLEDs: Beyond Traditional Precious Metals. Chemistry - an Asian Journal, 2021, 16, 2817-2829.	3.3	41
53	Multistage Stimulusâ€Responsive Room Temperature Phosphorescence Based on Host–Guest Doping Systems. Angewandte Chemie, 2021, 133, 20421-20425.	2.0	17
54	Tunable Photoresponsive Behaviors Based on Triphenylamine Derivatives: The Pivotal Role of π onjugated Structure and Corresponding Application. Advanced Materials, 2021, 33, e2104002.	21.0	83

#	Article	IF	CITATIONS
55	Alkyl chain regulation: distinctive odd–even effects of mechano-luminescence and room-temperature phosphorescence in alkyl substituted carbazole amide derivatives. Journal of Materials Chemistry C, 2021, 9, 12124-12132.	5.5	16
56	The crucial roles of the configurations and electronic properties of organic hole-transporting molecules to the photovoltaic performance of perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 18148-18163.	10.3	24
57	Tunable Photocontrolled Motions of Anilâ€Poly(ethylene terephthalate) Systems through Excitedâ€State Intramolecular Proton Transfer and <i>Trans–Cis</i> Isomerization. Advanced Materials, 2021, 33, e2005249.	21.0	20
58	The same molecule but a different molecular conformation results in a different room temperature phosphorescence in phenothiazine derivatives. Journal of Materials Chemistry C, 2021, 9, 15375-15380.	5.5	25
59	A Realizable Green Strategy to Negative Polyurethane Photoresists through the Application of a Silicone Resin Photoinitiator. ACS Applied Polymer Materials, 2021, 3, 929-936.	4.4	4
60	Intramolecular-locked triphenylamine derivatives with adjustable room temperature phosphorescence properties by the substituent effect. Materials Chemistry Frontiers, 2021, 6, 33-39.	5.9	11
61	Aggregationâ€Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2101169.	7.6	19
62	Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0	rg B.T 8/Ove	flo ct a 10 Tf 50
63	Miracles of molecular uniting. Science China Materials, 2020, 63, 177-184.	6.3	77
64	Heartbeat-Sensing Mechanoluminescent Device Based on a Quantitative Relationship between Pressure and Emissive Intensity. Matter, 2020, 2, 181-193.	10.0	133
65	Recent progress of magnetic nanomaterials from cobalt-containing organometallic polymer precursors. Polymer Chemistry, 2020, 11, 764-778.	3.9	18
66	Persistent organic room temperature phosphorescence: what is the role of molecular dimers?. Chemical Science, 2020, 11, 833-838.	7.4	94
67	The development of mechanoluminescence from organic compounds: breakthrough and deep insight. Materials Chemistry Frontiers, 2020, 4, 317-331.	5.9	90
68	Vertical Orientated Dion–Jacobson Quasiâ€⊋D Perovskite Film with Improved Photovoltaic Performance and Stability. Small Methods, 2020, 4, 1900831.	8.6	96
69	Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 3301-3326.	8.0	59
70	Host–guest materials with room temperature phosphorescence: Tunable emission color and thermal printing patterns. SmartMat, 2020, 1, e1006.	10.7	112
71	1.42-Fold Enhancement of Blue OLED Device Performance by Simply Changing Alkyl Groups on the Acridine Ring. Cell Reports Physical Science, 2020, 1, 100252.	5.6	24
72	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie, 2020, 132, 20336-20341.	2.0	12

#	Article	IF	CITATIONS
73	Roomâ€Temperature Phosphorescence Invoked Through Norbornylâ€Driven Intermolecular Interaction Intensification with Anomalous Reversible Solidâ€State Photochromism. Angewandte Chemie - International Edition, 2020, 59, 20161-20166.	13.8	47
74	A TCBD-based AB ₂ -type second-order nonlinear optical hyperbranched polymer prepared by a facile click-type postfunctionalization. Polymer Chemistry, 2020, 11, 5493-5499.	3.9	13
75	2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nature Nanotechnology, 2020, 15, 934-940.	31.5	258
76	Synergy effect of electronic characteristics and spatial configurations of electron donors on photovoltaic performance of organic dyes. Journal of Materials Chemistry C, 2020, 8, 14453-14461.	5.5	9
77	Intermolecular electronic coupling of 9-methyl-9H-dibenzo[a,[c] carbazole for strong emission in aggregated state by substituent effect. Science China Chemistry, 2020, 63, 1435-1442.	8.2	36
78	Elucidation of distinct fluorescence and room-temperature phosphorescence of organic polymorphs from benzophenone–borate derivatives. Physical Chemistry Chemical Physics, 2020, 22, 21445-21452.	2.8	11
79	Roomâ€Temperature Phosphorescence Resonance Energy Transfer for Construction of Nearâ€Infrared Afterglow Imaging Agents. Advanced Materials, 2020, 32, e2006752.	21.0	265
80	A Correlation Study between Dendritic Structure and Macroscopic Nonlinearity for Second-Order Nonlinear Optical Materials. Macromolecules, 2020, 53, 4012-4021.	4.8	20
81	Effects of alkoxylation position on fused-ring electron acceptors. Journal of Materials Chemistry C, 2020, 8, 15128-15134.	5.5	8
82	Structural Design of Blueâ€ŧoâ€Red Thermallyâ€Activated Delayed Fluorescence Molecules by Adjusting the Strength between Donor and Acceptor. Asian Journal of Organic Chemistry, 2020, 9, 1262-1276.	2.7	41
83	Adjusting Organic Room-Temperature Phosphorescence with Orderly Stimulus-Responsive Molecular Motion in Crystals. Cell Reports Physical Science, 2020, 1, 100052.	5.6	36
84	Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells. Joule, 2020, 4, 1248-1262.	24.0	260
85	Bright mechanoluminescent luminogens even in daylight through close intermolecular interaction with the characteristic of hybridized local and charge transfer (HLCT). Journal of Materials Chemistry C, 2020, 8, 10852-10858.	5.5	22
86	Dopantâ€Free Crossconjugated Holeâ€Transporting Polymers for Highly Efficient Perovskite Solar Cells. Advanced Science, 2020, 7, 1903331.	11.2	55
87	Förster Resonance Energy Transfer: An Efficient Way to Develop Stimulus-Responsive Room-Temperature Phosphorescence Materials and Their Applications. Matter, 2020, 3, 449-463.	10.0	218
88	Stimulusâ€responsive room temperature phosphorescence in purely organic luminogens. InformaÄnÃ- Materiály, 2020, 2, 791-806.	17.3	100
89	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
90	Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Accounts of Chemical Research, 2020, 53, 962-973.	15.6	545

#	Article	IF	CITATIONS
91	Partially Controlling Molecular Packing to Achieve Off–On Mechanochromism through Ingenious Molecular Design. Advanced Optical Materials, 2020, 8, 1902036.	7.3	43
92	9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angewandte Chemie, 2020, 132, 10032-10037.	2.0	66
93	9,9â€Dimethylxanthene Derivatives with Roomâ€Temperature Phosphorescence: Substituent Effects and Emissive Properties. Angewandte Chemie - International Edition, 2020, 59, 9946-9951.	13.8	109
94	A New Strategy to Reduce Toxicity of Ethidium Bromide by Alternating Anions: New Derivatives with Excellent Optical Performances, Convenient Synthesis, and Low Toxicity. Small Methods, 2020, 4, 1900779.	8.6	7
95	Photo-crosslinkable second order nonlinear AB ₂ -type monomers: convenient synthesis and enhanced NLO thermostability. Journal of Materials Chemistry C, 2020, 8, 6380-6387.	5.5	11
96	Highâ€Contrast Polymorphic Luminogen Formed through Effect of Tiny Differences in Intermolecular Interactions on the Intramolecular Charge Transfer Process. Advanced Optical Materials, 2020, 8, 2000436.	7.3	12
97	Organic luminescent materials: The concentration on aggregates from aggregationâ€induced emission. Aggregate, 2020, 1, 6-18.	9.9	288
98	Controllable Synthesis of Externally Functional Dendronized Polymers. CCS Chemistry, 2020, 2, 1040-1048.	7.8	21
99	Utilizing Electroplex Emission to Achieve External Quantum Efficiency up to 18.1% in Nondoped Blue OLED. Research, 2020, 2020, 8649102.	5.7	12
100	Materials chemistry research at Tianjin University. Materials Chemistry Frontiers, 2020, 4, 690-691.	5.9	0
101	Modulation of Acceptor Position in Organic Sensitizers: The Optimization of Intramolecular and Interfacial Charge Transfer Processes. ACS Applied Materials & Interfaces, 2019, 11, 27648-27657.	8.0	20
102	Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. Science China Chemistry, 2019, 62, 1090-1098.	8.2	269
103	Perylene diimide-based cathode interfacial materials: adjustable molecular structures and conformation, optimized film morphology, and much improved performance of non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2019, 3, 1840-1848.	5.9	28
104	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie - International Edition, 2019, 58, 17297-17302.	13.8	116
105	Mechanoluminescence or Roomâ€Temperature Phosphorescence: Molecular Packingâ€Dependent Emission Response. Angewandte Chemie, 2019, 131, 17457-17462.	2.0	26
106	Dopantâ€Free Squaraineâ€Based Polymeric Holeâ€Transporting Materials with Comprehensive Passivation Effects for Efficient Allâ€Inorganic Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 17724-17730.	13.8	118
107	Spiro-Structure: A Good Approach to Achieve Mechanoluminescence Property. ACS Omega, 2019, 4, 18609-18615.	3.5	11
108	Highly Efficient Organic Room-Temperature Phosphorescent Luminophores through Tuning Triplet States and Spin–Orbit Coupling with Incorporation of a Secondary Group. Journal of Physical Chemistry Letters, 2019, 10, 7141-7147.	4.6	23

#	Article	IF	CITATIONS
109	Insight from the old: mechanochromism and mechanoluminescence of two amine-containing tetraphenylethylene isomers. Journal of Materials Chemistry C, 2019, 7, 11790-11796.	5.5	38
110	Halogen-substituted triphenylamine derivatives with intense mechanoluminescence properties. Journal of Materials Chemistry C, 2019, 7, 12256-12262.	5.5	34
111	Facile-Effective Hole-Transporting Materials Based on Dibenzo[<i>a</i> , <i>c</i>]carbazole: The Key Role of Linkage Position to Photovoltaic Performance of Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2514-2521.	17.4	59
112	Pyrene-fused PDI based ternary solar cells: high power conversion efficiency over 10%, and improved device thermal stability. Materials Chemistry Frontiers, 2019, 3, 93-102.	5.9	27
113	Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. Chinese Journal of Polymer Science (English Edition), 2019, 37, 383-393.	3.8	105
114	Halogenâ€Containing TPAâ€Based Luminogens: Different Molecular Packing and Different Mechanoluminescence. Advanced Optical Materials, 2019, 7, 1900505.	7.3	43
115	Enhanced performance and stability of p–i–n perovskite solar cells by utilizing an AIE-active cathode interlayer. Journal of Materials Chemistry A, 2019, 7, 15662-15672.	10.3	21
116	Silicone-Thioxanthone: A Multifunctionalized Visible Light Photoinitiator with an Ability to Modify the Cured Polymers. Polymers, 2019, 11, 695.	4.5	16
117	Janus NLO dendrimers with different peripheral functional groups: convenient synthesis and enhanced NLO performance with the aid of the Ar–Ar ^F self-assembly. Journal of Materials Chemistry C, 2019, 7, 7344-7351.	5.5	21
118	Recent Advances in the <i>Z</i> / <i>E</i> â€lsomers of Tetraphenylethene Derivatives: Stereoselective Synthesis, AIE Mechanism, Photophysical Properties, and Application as Chemical Probes. Chemistry - an Asian Journal, 2019, 14, 2524-2541.	3.3	55
119	A fluorescent and colorimetric probe based on naphthalene diimide and its high sensitivity towards copper ions when used as test strips. RSC Advances, 2019, 9, 12675-12680.	3.6	8
120	Multiple Luminescence Responses towards Mechanical Stimulus and Photoâ€Induction: The Key Role of the Stuck Packing Mode and Tunable Intermolecular Interactions. Chemistry - A European Journal, 2019, 25, 7031-7037.	3.3	64
121	Similar or different: the same Spiro-core but different alkyl chains with apparently improved device performance of perovskite solar cells. Science China Chemistry, 2019, 62, 739-745.	8.2	27
122	Hole Transport Materials Based on 6,12â€Dihydroindeno[1,2â€b]fluorine with Different Periphery Groups: A New Strategy for Dopantâ€Free Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901296.	14.9	45
123	The odd–even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding <i>in vivo</i> imaging. Materials Chemistry Frontiers, 2019, 3, 1391-1397.	5.9	81
124	Enhanced Hole Transportation for Inverted Tinâ€Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials, 2019, 29, 1808059.	14.9	133
125	High Efficiency and Low Rollâ€Off Hybrid WOLEDs by Using a Deep Blue Aggregationâ€Induced Emission Material Simultaneously as Blue Emitter and Phosphor Host. Advanced Optical Materials, 2019, 7, 1801539.	7.3	23
126	Convenient preparation of CsSnI ₃ quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. Journal of Materials Chemistry A, 2019, 7, 7683-7690.	10.3	116

#	Article	IF	CITATIONS
127	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
128	Phenanthroimidazole derivatives with minor structural differences: crystalline polymorphisms, different molecular packing, and totally different mechanoluminescence. Journal of Materials Chemistry C, 2019, 7, 13759-13763.	5.5	39
129	Suppressing photo-oxidation of non-fullerene acceptors and their blends in organic solar cells by exploring material design and employing friendly stabilizers. Journal of Materials Chemistry A, 2019, 7, 25088-25101.	10.3	107
130	The influence of intermolecular interactions and molecular packings on mechanochromism and mechanoluminescence – a tetraphenylethylene derivative case. Journal of Materials Chemistry C, 2019, 7, 12709-12716.	5.5	34
131	Recyclable mechanoluminescent luminogen: different polymorphs, different self-assembly effects of the thiophene moiety and recovered molecular packing <i>via</i> simple thermal-treatment. Materials Chemistry Frontiers, 2019, 3, 32-38.	5.9	57
132	Fluorineâ€ 5 ubstituted Tetraphenylethene Isomers with Different Triboluminescence Properties. ChemPhotoChem, 2019, 3, 133-137.	3.0	14
133	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	4.8	19
134	Mechanoluminescence Materials with the Characteristic of Aggregation-Induced Emission (AIE). , 2019, , 141-162.		4
135	Visual Imaging of Plasma Membrane: New Application for Aggregation Induced Emission (AIE) Probe. Chinese Journal of Organic Chemistry, 2019, 39, 3304.	1.3	10
136	The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nature Communications, 2018, 9, 840.	12.8	764
137	A second-order nonlinear optical dendronized hyperbranched polymer containing isolation chromophores: achieving good optical nonlinearity and stability simultaneously. Science China Chemistry, 2018, 61, 584-591.	8.2	18
138	Triboluminescence: Recalling Interest and New Aspects. CheM, 2018, 4, 943-971.	11.7	216
139	Novel AIE-active ratiometric fluorescent probes for mercury(<scp>ii</scp>) based on the Hg ²⁺ -promoted deprotection of thioketal, and good mechanochromic properties. Journal of Materials Chemistry C, 2018, 6, 773-780.	5.5	82
140	A dual fluorogenic and ¹⁹ F NMR probe for the detection of esterase activity. Materials Chemistry Frontiers, 2018, 2, 1201-1206.	5.9	24
141	Nondirected Copper-Catalyzed Sulfoxidations of Benzylic C–H Bonds. Organic Letters, 2018, 20, 2076-2079.	4.6	33
142	New perylene diimide derivatives: stable red emission, adjustable property from ACQ to AIE, and good device performance with an EQE value of 4.93%. Science Bulletin, 2018, 63, 108-116.	9.0	36
143	New application of AlEgens realized in photodetectors: reduced work function of transparent electrodes and much improved performance. Materials Chemistry Frontiers, 2018, 2, 264-269.	5.9	23
144	Enzyme-Responsive Bioprobes Based on the Mechanism of Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2018, 10, 12278-12294.	8.0	109

#	Article	IF	CITATIONS
145	A multifunctionalized macromolecular silicone-naphthalimide visible photoinitiator for free radical polymerization. Progress in Organic Coatings, 2018, 115, 151-158.	3.9	23
146	A red fluorescence probe based on naphthalene diimide for selective detection of sulfide by displacement strategy. Sensors and Actuators B: Chemical, 2018, 257, 882-888.	7.8	18
147	Holeâ€Transporting Materials for Perovskite Solar Cells. Asian Journal of Organic Chemistry, 2018, 7, 2182-2200.	2.7	49
148	Organic Dyes based on Tetraarylâ€1,4â€dihydropyrroloâ€[3,2â€ <i>b</i>]pyrroles for Photovoltaic and Photocatalysis Applications with the Suppressed Electron Recombination. Chemistry - A European Journal, 2018, 24, 18032-18042.	3.3	28
149	Bromineâ€Substituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie - International Edition, 2018, 57, 16821-16826.	13.8	111
150	Bromineâ€Substituted Fluorene: Molecular Structure, Br–Br Interactions, Roomâ€Temperature Phosphorescence, and Tricolor Triboluminescence. Angewandte Chemie, 2018, 130, 17063-17068.	2.0	26
151	Molecular Conformationâ€Dependent Mechanoluminescence: Same Mechanical Stimulus but Different Emissive Color over Time. Angewandte Chemie - International Edition, 2018, 57, 14174-14178.	13.8	170
152	Molecular Conformationâ€Dependent Mechanoluminescence: Same Mechanical Stimulus but Different Emissive Color over Time. Angewandte Chemie, 2018, 130, 14370-14374.	2.0	39
153	Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond. Materials Chemistry Frontiers, 2018, 2, 2124-2129.	5.9	138
154	Significantly improved performance of dye-sensitized solar cells by optimizing organic dyes with pyrrole as the isolation spacer and utilizing alkyl chain engineering. Journal of Materials Chemistry A, 2018, 6, 22256-22265.	10.3	20
155	Butterfly-shaped asymmetric squaraine dimers for organic photovoltaics. Journal of Materials Chemistry C, 2018, 6, 10547-10556.	5.5	12
156	Rational Molecular Design for Efficient Exciton Harvesting, and Deepâ€Blue OLED Application. Advanced Optical Materials, 2018, 6, 1800342.	7.3	80
157	A rigid ringlike molecule: large second-order nonlinear optical performance, good temporal and thermal stability, and ideal spherical structure conforming to the "site isolation―principle. Journal of Materials Chemistry C, 2018, 6, 6784-6791.	5.5	22
158	Naphthalimideâ€and Methacrylateâ€Functionalized Polysiloxanes: Visibleâ€Light Photoinitiators, Modifiers for Polyurethane Acrylate and Photocurable Coatings. ChemPhotoChem, 2018, 2, 818-824.	3.0	11
159	The Influence of Molecular Packing on the Emissive Behavior of Pyrene Derivatives: Mechanoluminescence and Mechanochromism. Advanced Optical Materials, 2018, 6, 1800198.	7.3	125
160	Opposite mechanoluminescence behavior of two isomers with different linkage positions. Chemical Communications, 2018, 54, 5598-5601.	4.1	67
161	Janus molecules: large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Materials Chemistry Frontiers, 2018, 2, 1374-1382.	5.9	28
162	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. Small, 2018, 14, e1801560.	10.0	204

#	Article	IF	CITATIONS
163	Tunable Aggregation-Induced Emission Nanoparticles by Varying Isolation Groups in Perylene Diimide Derivatives and Application in Three-Photon Fluorescence Bioimaging. ACS Nano, 2018, 12, 9532-9540.	14.6	106
164	Photo-crosslinkable second-order nonlinear optical polymer: facile synthesis and enhanced NLO thermostability. Polymer Chemistry, 2018, 9, 3522-3527.	3.9	19
165	A pseudo-two-dimensional conjugated polysquaraine: an efficient p-type polymer semiconductor for organic photovoltaics and perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 13644-13651.	10.3	47
166	How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations. Advanced Materials, 2017, 29, 1606829.	21.0	351
167	The marriage of AIE and interface engineering: convenient synthesis and enhanced photovoltaic performance. Chemical Science, 2017, 8, 3750-3758.	7.4	41
168	The Strong Lightâ€Emission Materials in the Aggregated State: What Happens from a Single Molecule to the Collective Group. Advanced Science, 2017, 4, 1600484.	11.2	472
169	A 19F NMR probe for the detection of β-galactosidase: simple structure with low molecular weight of 274.2, "turn-on―signal without the background, and good performance applicable in cancer cell line. Journal of Materials Chemistry B, 2017, 5, 4673-4678.	5.8	7
170	Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Materials Chemistry Frontiers, 2017, 1, 2174-2194.	5.9	477
171	New insight into intramolecular conjugation in the design of efficient blue materials: from the control of emission to absorption. Journal of Materials Chemistry C, 2017, 5, 6185-6192.	5.5	10
172	Ar–Ar ^F Selfâ€Assembly of Starâ€Shaped Secondâ€Order Nonlinear Optical Chromophores Achieving Large Macroscopic Nonlinearities. Advanced Electronic Materials, 2017, 3, 1700138.	5.1	27
173	Reaction-based conjugated polymer fluorescent probe for mercury(<scp>ii</scp>): good sensing performance with "turn-on―signal output. Polymer Chemistry, 2017, 8, 2221-2226.	3.9	48
174	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie - International Edition, 2017, 56, 880-884.	13.8	250
175	AlEgen with Fluorescence–Phosphorescence Dual Mechanoluminescence at Room Temperature. Angewandte Chemie, 2017, 129, 898-902.	2.0	90
176	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.3	62
177	Copolymers of carbazole and phenazine derivatives: minor structural modification, but totally different photodetector performance. Polymer Chemistry, 2017, 8, 1039-1048.	3.9	17
178	A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Science Bulletin, 2017, 62, 1331-1336.	9.0	84
179	Elucidating the Excited State of Mechanoluminescence in Organic Luminogens with Roomâ€Temperature Phosphorescence. Angewandte Chemie - International Edition, 2017, 56, 15299-15303.	13.8	215
180	Elucidating the Excited State of Mechanoluminescence in Organic Luminogens with Roomâ€Temperature Phosphorescence. Angewandte Chemie, 2017, 129, 15501-15505.	2.0	75

#	Article	IF	CITATIONS
181	Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behaviorand the molecular packing, and the potential related applications. Chemical Science, 2017, 8, 8336-8344.	7.4	176
182	Novel D–Aâ~π–A-Type Organic Dyes Containing a Ladderlike Dithienocyclopentacarbazole Donor for Effective Dye-Sensitized Solar Cells. ACS Omega, 2017, 2, 7048-7056.	3.5	23
183	Alkyl chain engineering of pyrene-fused perylene diimides: impact on transport ability and microfiber self-assembly. Materials Chemistry Frontiers, 2017, 1, 2341-2348.	5.9	23
184	Three polymorphs of one luminogen: how the molecular packing affects the RTP and AIE properties?. Journal of Materials Chemistry C, 2017, 5, 9242-9246.	5.5	164
185	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Circuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	5.8	24
186	Mechanoluminescence from pure hydrocarbon AlEgen. Chemical Communications, 2017, 53, 11330-11333.	4.1	79
187	Triphenylamine derivatives: different molecular packing and the corresponding mechanoluminescent or mechanochromism property. Journal of Materials Chemistry C, 2017, 5, 9879-9885.	5.5	103
188	Fabrication of high-performance non-doped OLEDs by combining aggregation-induced emission and thermally activated delayed fluorescence. Science China Chemistry, 2017, 60, 1107-1108.	8.2	17
189	A dual-function probe based on naphthalene diimide for fluorescent recognition of Hg2+ and colorimetric detection of Cu2+. Sensors and Actuators B: Chemical, 2017, 252, 1105-1111.	7.8	33
190	To form AIE product with the target analyte: A new strategy for excellent fluorescent probes, and convenient detection of hydrazine in seconds with test strips. Science China Chemistry, 2017, 60, 1596-1601.	8.2	41
191	The design of second-order nonlinear optical dendrimers: From "branch only―to "root containing― Chinese Journal of Polymer Science (English Edition), 2017, 35, 793-798.	3.8	16
192	Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers. Chemical Record, 2017, 17, 71-89.	5.8	42
193	A highly sensitive and selective fluorescent probe for hypochlorite in pure water with aggregation induced emission characteristics. Faraday Discussions, 2017, 196, 427-438.	3.2	37
194	Blue pyrene-based AIEgens: inhibited intermolecular π–π stacking through the introduction of substituents with controllable intramolecular conjugation, and high external quantum efficiencies up to 3.46% in non-doped OLEDs. Materials Chemistry Frontiers, 2017, 1, 91-99.	5.9	135
195	Janus second-order nonlinear optical dendrimers: their controllable molecular topology and corresponding largely enhanced performance. Chemical Science, 2017, 8, 340-347.	7.4	59
196	A new red fluorescent probe for Hg2+ based on naphthalene diimide and its application in living cells, reversibility on strip papers. Sensors and Actuators B: Chemical, 2017, 238, 735-743.	7.8	56
197	Pyrene-Based Blue AlEgen: Enhanced Hole Mobility and Good EL Performance in Solution-Processed OLEDs. Molecules, 2017, 22, 2144.	3.8	21
198	Progress of pyrene-based organic semiconductor in organic field effect transistors. Science China Chemistry, 2016, 59, 1623-1631.	8.2	52

#	Article	IF	CITATIONS
199	FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the "Isolation Chromophore―concept. Journal of Materials Chemistry C, 2016, 4, 11474-11481.	5.5	17
200	A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polymer Chemistry, 2016, 7, 4016-4024.	3.9	22
201	Functionalization of graphene by a TPE-containing polymer using nitrogen-based nucleophiles. Polymer Chemistry, 2016, 7, 4054-4062.	3.9	16
202	Different Effect of the Additional Electron-Withdrawing Cyano Group in Different Conjugation Bridge: The Adjusted Molecular Energy Levels and Largely Improved Photovoltaic Performance. ACS Applied Materials & Interfaces, 2016, 8, 12134-12140.	8.0	28
203	Co-sensitization of "H―type dyes with planar squaraine dyes for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 40750-40759.	3.6	12
204	Molecular Engineering of Mechanochromic Materials by Programmed C–H Arylation: Making a Counterpoint in the Chromism Trend. Journal of the American Chemical Society, 2016, 138, 12803-12812.	13.7	195
205	Tetraphenylcyclopentadiene Derivatives: Aggregationâ€Induced Emission, Adjustable Luminescence from Green to Blue, Efficient Undoped OLED Performance and Good Mechanochromic Properties. Small, 2016, 12, 6623-6632.	10.0	44
206	Conjugated or Broken: The Introduction of Isolation Spacer ahead of the Anchoring Moiety and the Improved Device Performance. ACS Applied Materials & Interfaces, 2016, 8, 28652-28662.	8.0	14
207	The introduction of conjugated isolation groups into the common acceptor cyanoacrylic acid: an efficient strategy to suppress the charge recombination in dye sensitized solar cells and the dramatically improved efficiency from 5.89% to 9.44%. Journal of Materials Chemistry A, 2016, 4, 16403-16409.	10.3	33
208	Pyrene-based blue AIEgens: tunable intramolecular conjugation, good hole mobility and reversible mechanochromism. Journal of Materials Chemistry C, 2016, 4, 8506-8513.	5.5	55
209	From ACQ to AIE: the suppression of the strong π–π interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chemical Communications, 2016, 52, 11496-11499.	4.1	145
210	Synthesis and characterization of dendronized hyperbranched polymers through the "A3+B2― approach. Science China Chemistry, 2016, 59, 1561-1567.	8.2	17
211	Blue AlEgens bearing triphenylethylene peripheral: adjustable intramolecular conjugation and good device performance. Science Bulletin, 2016, 61, 1746-1755.	9.0	23
212	Selective dissolution of halide perovskites as a step towards recycling solar cells. Nature Communications, 2016, 7, 11735.	12.8	129
213	New anthracene-based organic dyes: the flexible position of the anthracene moiety bearing isolation groups in the conjugated bridge and the adjustable cell performance. Organic Chemistry Frontiers, 2016, 3, 233-242.	4.5	10
214	Blue AIEgens: approaches to control the intramolecular conjugation and the optimized performance of OLED devices. Journal of Materials Chemistry C, 2016, 4, 2663-2684.	5.5	214
215	Benzene-cored AlEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect. Chemical Science, 2016, 7, 4355-4363.	7.4	85
216	Prying into the limit of CIE value for TPE-based blue AIEgens in organic light-emitting diodes. Dyes and Pigments, 2016, 128, 60-67.	3.7	21

#	Article	IF	CITATIONS
217	Effect of electron-withdrawing groups in conjugated bridges: molecular engineering of organic sensitizers for dye-sensitized solar cells. Frontiers of Optoelectronics, 2016, 9, 60-70.	3.7	6
218	A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties. Materials Horizons, 2016, 3, 220-225.	12.2	228
219	Dramatically enhancing the yield of carbon nanotubes by simply adding oxygen-containing molecules in solid-state synthesis. Chemical Communications, 2016, 52, 2976-2979.	4.1	3
220	The multistage amplifying effect: A novel approach to dramatically increase the sensitivity of chemodosimeter. Sensors and Actuators B: Chemical, 2016, 226, 211-217.	7.8	10
221	A "turn-on―fluorescence probe towards copper ions based on core-substitued naphthalene diimide. Sensors and Actuators B: Chemical, 2016, 226, 239-244.	7.8	47
222	Synthesis of Solution Processable Blue AlEgens and the Device Performance. Acta Chimica Sinica, 2016, 74, 865.	1.4	14
223	A relay strategy for the mercury (II) chemodosimeter with ultra-sensitivity as test strips. Scientific Reports, 2015, 5, 15987.	3.3	42
224	Influences of Conjugation Extent on the Aggregationâ€Induced Emission Quantum Efficiency in Silole Derivatives: A Computational Study. Chemistry - an Asian Journal, 2015, 10, 2154-2161.	3.3	40
225	Similar or Totally Different: the Adjustment of the Twist Conformation Through Minor Structural Modification, and Dramatically Improved Performance for Dye‧ensitized Solar Cell. Advanced Energy Materials, 2015, 5, 1500846.	19.5	51
226	Oxygen as the growth enhancer of carbon nanotubes in solid-state pyrolysis of organometallic precursors. Carbon, 2015, 87, 338-346.	10.3	11
227	New triphenylamine-based sensitizers bearing double anchor units for dye-sensitized solar cells. Science China Chemistry, 2015, 58, 1144-1151.	8.2	24
228	Visible/Near-Infrared-Light-Induced H ₂ Production over g-C ₃ N ₄ Co-sensitized by Organic Dye and Zinc Phthalocyanine Derivative. ACS Catalysis, 2015, 5, 504-510.	11.2	203
229	Polyphenylbenzene as a Platform for Deep-Blue OLEDs: Aggregation Enhanced Emission and High External Quantum Efficiency of 3.98%. Chemistry of Materials, 2015, 27, 1847-1854.	6.7	88
230	New AlEgens containing tetraphenylethene and silole moieties: tunable intramolecular conjugation, aggregation-induced emission characteristics and good device performance. Journal of Materials Chemistry C, 2015, 3, 2624-2631.	5.5	67
231	Pyrene fused perylene diimides: synthesis, characterization and applications in organic field-effect transistors and optical limiting with high performance. Chemical Communications, 2015, 51, 7156-7159.	4.1	101
232	Synthesis and Solid-State Pyrolysis Behavior of POSS Containing Organometallic Polymer with Dicobalt Hexacarbonyl in the Side Chain. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 98-106.	3.7	7
233	Main Chain Dendronized Polymers: Design, Synthesis, and Application in the Second-Order Nonlinear Optical (NLO) Area. Journal of Physical Chemistry C, 2015, 119, 14281-14287.	3.1	16
234	New AlEgens containing dibenzothiophene-S,S-dioxide and tetraphenylethene moieties: similar structures but very different hole/electron transport properties. Journal of Materials Chemistry C, 2015, 3, 5903-5909.	5.5	24

#	Article	IF	CITATIONS
235	"Turn-On―Fluorescent Probe for Mercury(II): High Selectivity and Sensitivity and New Design Approach by the Adjustment of the π-Bridge. ACS Applied Materials & Interfaces, 2015, 7, 11369-11376.	8.0	113
236	Twist versus Linkage Mode: Which One is Better for the Construction of Blue Luminogens with AIE Properties?. Chemistry - A European Journal, 2015, 21, 6862-6868.	3.3	42
237	How the control of aggregation state surprises us?. Science China Chemistry, 2015, 58, 969-969.	8.2	18
238	Main chain dendronized hyperbranched polymers: convenient synthesis and good second-order nonlinear optical performance. Polymer Chemistry, 2015, 6, 4396-4403.	3.9	17
239	New "X-type―second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Journal of Materials Chemistry C, 2015, 3, 4545-4552.	5.5	31
240	Dendronized hyperbranched polymers containing isolation chromophores: design, synthesis and further enhancement of the comprehensive NLO performance. Polymer Chemistry, 2015, 6, 5580-5589.	3.9	40
241	The partially controllable growth trend of carbon nanoparticles in solid-state pyrolysis of organometallic precursor by introducing POSS units, and their magnetic properties. RSC Advances, 2015, 5, 63296-63303.	3.6	5
242	The integration of an "X―type dendron into polymers to further improve the comprehensive NLO performance. Polymer Chemistry, 2015, 6, 6680-6688.	3.9	16
243	Blue AIE luminogens bearing methyl groups: different linkage position, different number of methyl groups, and different intramolecular conjugation. Organic Chemistry Frontiers, 2015, 2, 1608-1615.	4.5	12
244	The utilization of post-synthetic modification in opto-electronic polymers: an effective complementary approach but not a competitive one to the traditional direct polymerization process. Polymer Chemistry, 2015, 6, 6770-6791.	3.9	23
245	Two-dimensional quinoxaline based low bandgap conjugated polymers for bulk-heterojunction solar cells. Polymer Chemistry, 2015, 6, 7436-7446.	3.9	9
246	AIE probes towards biomolecules: the improved selectivity with the aid of graphene oxide. Science China Chemistry, 2015, 58, 1800-1809.	8.2	59
247	Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chemical Society Reviews, 2015, 44, 3997-4022.	38.1	329
248	An imidazole-containing core-substituted naphthalene diimide: Fluorescent sensing properties toward copper ion and optimized selectivity by tuning the solvent medium. Sensors and Actuators B: Chemical, 2015, 207, 827-832.	7.8	13
249	The influence of pentafluorophenyl groups on the nonlinear optical (NLO) performance of high generation dendrons and dendrimers. Scientific Reports, 2015, 4, 6101.	3.3	21
250	pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia, 2015, 11, 137-150.	8.3	93
251	Blue Aggregationâ€Induced Emission Luminogens: High External Quantum Efficiencies Up to 3.99% in LED Device, and Restriction of the Conjugation Length through Rational Molecular Design. Advanced Functional Materials, 2014, 24, 7645-7654.	14.9	137
252	Diphenyldibenzofulveneâ€Based Sensitizers for Efficient Dye‣ensitized Solar Cells: The Tuned Absorption Properties and Partially Suppressed Aggregation. Asian Journal of Organic Chemistry, 2014, 3, 176-184.	2.7	7

#	Article	IF	CITATIONS
253	Diverge from the norm. National Science Review, 2014, 1, 22-24.	9.5	21
254	Construction of efficient blue AIE emitters with triphenylamine and TPE moieties for non-doped OLEDs. Journal of Materials Chemistry C, 2014, 2, 2028.	5.5	122
255	Largely blue-shifted emission through minor structural modifications: molecular design, synthesis, aggregation-induced emission and deep-blue OLED application. Chemical Communications, 2014, 50, 2136.	4.1	125
256	Synthesis of a cyclen-containing disubstituted polyacetylene with strong green photoluminescence and its application as a sensitive chemosensor towards sulfide anion with good selectivity and high sensitivity. Polymer Chemistry, 2014, 5, 2041-2049.	3.9	25
257	Molecular engineering and cosensitization for developing efficient solar cells based on porphyrin dyes with an extended π framework. Science China Chemistry, 2014, 57, 1491-1491.	8.2	13
258	Further improvement of the macroscopic NLO coefficient and optical transparency of hyperbranched polymers by enhancing the degree of branching. Polymer Chemistry, 2014, 5, 5100.	3.9	25
259	POSS containing organometallic polymers: synthesis, characterization and solid-state pyrolysis behavior. Polymer Chemistry, 2014, 5, 5994-6002.	3.9	19
260	Construction of Efficient Solid Emitters with Tetraphenylethene Trimers for Nonâ€doped Blue OLEDs. Israel Journal of Chemistry, 2014, 54, 931-934.	2.3	11
261	Using low generation dendrimers as monomers to construct dendronized hyperbranched polymers with high nonlinear optical performance. Journal of Materials Chemistry C, 2014, 2, 8122-8130.	5.5	22
262	A New Approach to Prepare Efficient Blue AIE Emitters for Undoped OLEDs. Chemistry - A European Journal, 2014, 20, 5317-5326.	3.3	71
263	Using an orthogonal approach and one-pot method to simplify the synthesis of nonlinear optical (NLO) dendrimers. Polymer Chemistry, 2014, 5, 6667-6670.	3.9	10
264	Organic Sensitizers Featuring 9,10-Diaryl-Substituted Anthracene Unit. ACS Sustainable Chemistry and Engineering, 2014, 2, 1776-1784.	6.7	24
265	Controllable preparation of nanocomposites through convenient structural modification of cobalt contained organometallic precursors: nanotubes and nanospheres with high selectivity, and their magnetic properties. Journal of Materials Chemistry C, 2014, 2, 633-640.	5.5	13
266	Organic dyes incorporating N-functionalized pyrrole as conjugated bridge for dye-sensitized solar cells: Convenient synthesis, additional withdrawing group on the π-bridge and the suppressed aggregation. Dyes and Pigments, 2013, 99, 863-870.	3.7	32
267	Construction of deep-blue AIE luminogens with TPE and oxadiazole units. Science China Chemistry, 2013, 56, 1213-1220.	8.2	20
268	Design, synthesis and nonlinear optical properties of "dendronized hyperbranched polymers― Science Bulletin, 2013, 58, 2753-2761.	1.7	22
269	Second-order nonlinear optical (NLO) polymers containing perfluoroaromatic rings as isolation groups with Ar/ArF self-assembly effect: Enhanced NLO coefficient and stability. Polymer, 2013, 54, 5655-5664.	3.8	13
270	A functional conjugated hyperbranched polymer derived from tetraphenylethene and oxadiazole moieties: Synthesis by one-pot "a4+b2+c2―polymerization and applicaion as explosive chemosensor and pled. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1432-1442.	3.8	21

#	Article	IF	CITATIONS
271	Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both "H―type and star-type chromophores. Chinese Journal of Polymer Science (English) Tj ET	Qq å.å 0.70	84 34 4 rgBT
272	The self-assembly effect in NLO polymers containing isolation chromophores: enhanced NLO coefficient and stability. New Journal of Chemistry, 2013, 37, 1789.	2.8	7
273	Using Two Simple Methods of ArAr ^F Selfâ€Assembly and Isolation Chromophores to Further Improve the Comprehensive Performance of NLO Dendrimers. Chemistry - A European Journal, 2013, 19, 630-641.	3.3	37
274	Changing the shape of chromophores from "H-type―to "star-type― increasing the macroscopic NLO effects by a large degree. Polymer Chemistry, 2013, 4, 378-386.	3.9	21
275	Second-order nonlinear optical dendrimers containing different types of isolation groups: convenient synthesis through powerful "click chemistry―and large NLO effects. Journal of Materials Chemistry C, 2013, 1, 717-728.	5.5	44
276	New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer, 2013, 54, 4351-4382.	3.8	106
277	Attempt to Improve the Performance of Pyrrole-Containing Dyes in Dye Sensitized Solar Cells by Adjusting Isolation Groups. ACS Applied Materials & Interfaces, 2013, 5, 12469-12477.	8.0	45
278	A series of AB2-type second-order nonlinear optical (NLO) polyaryleneethynylenes: using different end-capped spacers with adjustable bulk to achieve high NLO coefficients. Polymer Chemistry, 2013, 4, 2361.	3.9	26
279	A New Lowâ€Bandgap Polymer Containing Benzeneâ€Fused Quinoxaline: Significantly Enhanced Performance Caused by One Additional Benzene Ring. Macromolecular Rapid Communications, 2013, 34, 227-233.	3.9	11
280	Further Enhancement of the Secondâ€Order Nonlinear Optical (NLO) Coefficient and the Stability of NLO Polymers that Contain Isolation Chromophore Moieties by Using the "Suitable Isolation Group― Concept and the Ar/Ar ^F Selfâ€Assembly Effect. Chemistry - an Asian Journal, 2013, 8, 1836-1846.	3.3	11
281	Main-chain second-order nonlinear optical polyaryleneethynylenes containing isolation chromophores: enhanced nonlinear optical properties, improved optical transparency and stability. Polymer Chemistry, 2013, 4, 3196.	3.9	17
282	New sensitizers bearing quinoxaline moieties as an auxiliary acceptor for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 405-413.	3.7	32
283	Using an isolation chromophore to further improve the comprehensive performance of nonlinear optical (NLO) dendrimers. Journal of Materials Chemistry C, 2013, 1, 3226.	5.5	21
284	"Reactive―probe for hydrogen sulfite: "turn-on―fluorescent sensing and bioimaging application. Journal of Materials Chemistry B, 2013, 1, 4110.	5.8	72
285	Dendrimers with Large Nonlinear Optical Performance by Introducing Isolation Chromophore, Utilizing the Ar/Ar ^F Self-Assembly Effect, And Modifying the Topological Structure. ACS Applied Materials & Interfaces, 2013, 5, 7033-7041.	8.0	30
286	Similar or Totally Different: The Control of Conjugation Degree through Minor Structural Modifications, and Deepâ€Blue Aggregationâ€Induced Emission Luminogens for Nonâ€Doped OLEDs. Advanced Functional Materials, 2013, 23, 2329-2337.	14.9	270
287	Synthesis, characterization and photovoltaic performances of D–A copolymers based on BDT and DBP2: the largely improved performance caused by additional thiophene blocks. Journal of Materials Chemistry A, 2013, 1, 4508.	10.3	31
288	A New Disubstituted Polyacetylene Bearing 6â€Benzylaminopurine Moieties: Postfunctional Synthetic Strategy and Sensitive Chemosensor Towards Copper and Cobalt Ions. Macromolecular Rapid Communications, 2013, 34, 759-766.	3.9	22

#	Article	IF	CITATIONS
289	The Utilization of Isolation Chromophore in an "A ₃ +B ₂ ―Type Secondâ€Order Nonlinear Optical Hyperbranched Polymer. Macromolecular Rapid Communications, 2013, 34, 1072-1079.	3.9	7
290	Introduction of an Isolation Chromophore into an "Hâ€â€Shaped NLO Polymer: Enhanced NLO Effect, Optical Transparency, and Stability. ChemPlusChem, 2013, 78, 1523-1529.	2.8	10
291	FACILE APPROACHES FOR CONSTRUCTING BLUE/DEEP-BLUE TPE-BASED SOLID EMITTERS. Journal of Molecular and Engineering Materials, 2013, 01, 1340006.	1.8	7
292	High performance organic sensitizers based on 11,12-bis(hexyloxy) dibenzo[a,c]phenazine for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18830.	6.7	86
293	New second-order nonlinear optical (NLO) hyperbranched polymers containing isolation chromophore moieties derived from one-pot "A2 + B4―approach via Suzuki coupling reaction. RSC Advances, 2012, 2, 6520.	3.6	34
294	New colorimetric chemosensor bearing naphthalendiimide unit with large blue-shift absorption for naked eyes detection of Cu2+ ions. Sensors and Actuators B: Chemical, 2012, 173, 580-584.	7.8	32
295	Novel pyrrole-based dyes for dye-sensitized solar cells: From rod-shape to "H―type. Journal of Materials Chemistry, 2012, 22, 6689.	6.7	81
296	Benzene-cored fluorophors with TPE peripheries: facile synthesis, crystallization-induced blue-shifted emission, and efficient blue luminogens for non-doped OLEDs. Journal of Materials Chemistry, 2012, 22, 12001.	6.7	114
297	Bipolar AIE-active luminogens comprised of an oxadiazole core and terminal TPE moieties as a new type of host for doped electroluminescence. Chemical Communications, 2012, 48, 9586.	4.1	80
298	Aromatic/perfluoroaromatic self-assembly effect: an effective strategy to improve the NLO effect. Journal of Materials Chemistry, 2012, 22, 18486.	6.7	42
299	A conjugated hyperbranched polymer constructed from carbazole and tetraphenylethylene moieties: convenient synthesis through one-pot "A2 + B4―Suzuki polymerization, aggregation-induced enhanced emission, and application as explosive chemosensors and PLEDs. Journal of Materials Chemistry, 2012, 22. 6374.	6.7	132
300	New tetraphenylethylene-containing conjugated polymers: Facile synthesis, aggregation-induced emission enhanced characteristics and application as explosive chemsensors and PLEDs. Polymer, 2012, 53, 3163-3171.	3.8	89
301	New tetraphenylethene-based efficient blue luminophors: aggregation induced emission and partially controllable emitting color. Journal of Materials Chemistry, 2012, 22, 2478-2484.	6.7	162
302	Poly(9,9′â€diheylfluorene carbazole) Functionalized with Reduced Graphene Oxide: Convenient Synthesis using Nitrogenâ€Based Nucleophiles and Potential Applications in Optical Limiting. Chemistry - A European Journal, 2012, 18, 14384-14391.	3.3	28
303	New hyperbranched secondâ€order nonlinear optical poly(aryleneâ€ethynylene)s containing pentafluoroaromatic rings as isolation group: Facile synthesis and enhanced optical nonlinearity through Arâ€Ar ^F selfâ€assembly effect. Journal of Polymer Science Part A, 2012, 50, 5124-5133.	2.3	31
304	An indirect approach for anion detection: the displacement strategy and its application. Chemical Communications, 2012, 48, 8462.	4.1	253
305	A New "Turn-on―Naphthalenedimide-Based Chemosensor for Mercury Ions with High Selectivity: Successful Utilization of the Mechanism of Twisted Intramolecular Charge Transfer, Near-IR Fluorescence, and Cell Images. Organic Letters, 2012, 14, 2094-2097.	4.6	111
306	New Fluorescent and Colorimetric Probe for Cyanide: Direct Reactivity, High Selectivity, and Bioimaging Application. ACS Applied Materials & Interfaces, 2012, 4, 4387-4392.	8.0	151

#	Article	IF	CITATIONS
307	Reaction-Based Colorimetric Cyanide Chemosensors: Rapid Naked-Eye Detection and High Selectivity. ACS Applied Materials & Interfaces, 2012, 4, 2133-2138.	8.0	156
308	Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chemical Science, 2012, 3, 1256.	7.4	70
309	2,3â€bis(5â€Hexylthiophenâ€2â€yl)â€6,7â€bis(octyloxy)â€5,8â€di(thiophenâ€2â€yl) quinoxaline: A good constr with adjustable role in the donorâ€l€â€acceptor system for bulkâ€heterojunction solar cells. Journal of Polymer Science Part A, 2012, 50, 2819-2828.	uction blc 2.3	ock 14
310	Efficient Metalâ€Free Organic Sensitizers Containing Tetraphenylethylene Moieties in the Donor Part for Dye‣ensitized Solar Cells. European Journal of Organic Chemistry, 2012, 2012, 5248-5255.	2.4	25
311	How the linkage positions affect the performance of bulk-heterojunction polymer solar cells. Journal of Materials Chemistry, 2012, 22, 12523.	6.7	41
312	New Hyperbranched Polytriazoles Containing Isolation Chromophore Moieties Derived from AB ₄ Monomers through Click Chemistry under Copper(I) Catalysis: Improved Optical Transparency and Enhanced NLO Effects. Chemistry - A European Journal, 2012, 18, 4426-4434.	3.3	72
313	A Strategy for Dramatically Enhancing the Selectivity of Molecules Showing Aggregationâ€Induced Emission towards Biomacromolecules with the Aid of Graphene Oxide. Chemistry - A European Journal, 2012, 18, 7278-7286.	3.3	49
314	Highâ€Generation Secondâ€Order Nonlinear Optical (NLO) Dendrimers that Contain Isolation Chromophores: Convenient Synthesis by Using Click Chemistry and their Increased NLO Effects. Chemistry - A European Journal, 2012, 18, 11019-11028.	3.3	55
315	A Reactionâ€Based Colorimetric Fluoride Probe: Rapid "Nakedâ€Eye―Detection and Large Absorption Shift. ChemPlusChem, 2012, 77, 908-913.	2.8	24
316	Syntheses and second-order nonlinear optical properties of a series of new "H―shape polymers. Dyes and Pigments, 2012, 94, 16-22.	3.7	23
317	New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells. Dyes and Pigments, 2012, 95, 244-251.	3.7	29
318	New main-chain hyperbranched polymers: Facile synthesis, structural control, and second-order nonlinear optical properties. Polymer, 2012, 53, 153-160.	3.8	32
319	Fluorescent and Colorimetric Probes for Mercury(II): Tunable Structures of Electron Donor and Ï€â€Conjugated Bridge. Chemistry - A European Journal, 2012, 18, 1691-1699.	3.3	83
320	Novel Functional Conjugative Hyperbranched Polymers with Aggregationâ€Induced Emission: Synthesis Through Oneâ€Pot "A ₂ +B ₄ ―Polymerization and Application as Explosive Chemsensors and PLEDs. Macromolecular Rapid Communications, 2012, 33, 164-171.	3.9	135
321	A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin. Chemical Communications, 2011, 47, 12385.	4.1	139
322	<i>N</i> -Arylpyrrole-Based Chromophores of Donor-ï€-Donor Type Displaying High Two-Photon Absorption. Journal of Physical Chemistry B, 2011, 115, 4279-4285.	2.6	12
323	Conjugated Polymers with Pyrrole as the Conjugated Bridge: Synthesis, Characterization, and Two-Photon Absorption Properties. Journal of Physical Chemistry B, 2011, 115, 8679-8685.	2.6	9
324	A "turn-on―fluorescent probe for hypochlorous acid: convenient synthesis, good sensing performance, and a new design strategy by the removal of Cî€N isomerization. Chemical Communications, 2011, 47, 11978.	4.1	229

#	Article	IF	CITATIONS
325	Some new design strategies for second-order nonlinear optical polymers and dendrimers. Polymer Chemistry, 2011, 2, 2723.	3.9	154
326	A New Disubstituted Polyacetylene Bearing Pyridine Moieties: Convenient Synthesis and Sensitive Chemosensor toward Sulfide Anion with High Selectivity. Macromolecules, 2011, 44, 5186-5193.	4.8	107
327	A highly specific rhodamine-based colorimetric probe for hypochlorites: a new sensing strategy and real application in tap water. Chemical Communications, 2011, 47, 3189.	4.1	123
328	A Series of Hyperbranched Polytriazoles Containing Perfluoroaromatic Rings from AB ₂ â€Type Monomers: Convenient Syntheses by Click Chemistry under Copper(I) Catalysis and Enhanced Optical Nonlinearity. Chemistry - an Asian Journal, 2011, 6, 2787-2795.	3.3	45
329	Synthesis and photovoltaic property of pyrrole-based conjugated oligomer as organic dye for dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 87-92.	0.2	1
330	Two-photon absorption in V-type chromophores with electron-rich heterocyclevinylene bridges. Science China Chemistry, 2011, 54, 625-630.	8.2	3
331	New series of AB ₂ â€type hyperbranched polytriazoles derived from the same polymeric intermediate: Different endcapping spacers with adjustable bulk and convenient syntheses via click chemistry under copper(I) catalysis. Journal of Polymer Science Part A, 2011, 49, 1977-1987.	2.3	45
332	Synthesis and twoâ€photon absorption properties of conjugated polymers with <i>N</i> â€arylpyrrole as conjugated bridge and isolation moieties. Journal of Polymer Science Part A, 2011, 49, 2538-2545.	2.3	5
333	New imidazoleâ€functionalized polyfluorene derivatives: convenient postfunctional syntheses, sensitive probes for metal ions and cyanide, and adjustable output signals with diversified fluorescence color. Journal of Polymer Science Part A, 2011, 49, 3314-3327.	2.3	23
334	Functionalization of Graphene Sheets by Polyacetylene: Convenient Synthesis and Enhanced Emission. Macromolecular Chemistry and Physics, 2011, 212, 768-773.	2.2	54
335	Azobenzeneâ€Based Colorimetric Chemosensors for Rapid Nakedâ€Eye Detection of Mercury(II). Chemistry - A European Journal, 2011, 17, 7276-7281.	3.3	108
336	A Highly Sensitive and Selective Fluorescent Probe for Cyanide Based on the Dissolution of Gold Nanoparticles and Its Application in Real Samples. Chemistry - A European Journal, 2011, 17, 9691-9696.	3.3	64
337	New fluorescent probes for mercury(II) with simple structure. Sensors and Actuators B: Chemical, 2011, 157, 57-63.	7.8	77
338	Highâ€Generation Secondâ€Order Nonlinear Optical (NLO) Dendrimers: Convenient Synthesis by Click Chemistry and the Increasing Trend of NLO Effects. Angewandte Chemie - International Edition, 2010, 49, 2763-2767.	13.8	139
339	New Secondâ€Order Nonlinear Optical Polymers Derived from AB ₂ and AB Monomers via Sonogashira Coupling Reaction. Macromolecular Chemistry and Physics, 2010, 211, 916-923.	2.2	20
340	New hyperbranched polyaryleneethynylene containing azobenzenechromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polymer Chemistry, 2010, 1, 78-81.	3.9	37
341	New Hyperbranched Conjugated Polymers Containing Hexaphenylbenzene and Oxadiazole Units: Convenient Synthesis and Efficient Deep Blue Emitters for PLEDs Application. Journal of Physical Chemistry B, 2010, 114, 9101-9108.	2.6	32
342	A New Approach to Design Ratiometric Fluorescent Probe for Mercury(II) Based on the Hg ²⁺ -Promoted Deprotection of Thioacetals. ACS Applied Materials & Interfaces, 2010, 2, 1066-1072.	8.0	134

#	Article	IF	CITATIONS
343	Functionalized Siloles: Versatile Synthesis, Aggregationâ€Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 2009, 19, 905-917.	14.9	311
344	A New Carbazoleâ€Constructed Hyperbranched Polymer: Convenient Oneâ€Pot Synthesis, Holeâ€Transporting Ability, and Fieldâ€Effect Transistor Properties. Advanced Functional Materials, 2009, 19, 2677-2683.	14.9	54
345	New Pyrroleâ€Based Organic Dyes for Dyeâ€5ensitized Solar Cells: Convenient Syntheses and High Efficiency. Chemistry - A European Journal, 2009, 15, 9664-9668.	3.3	59
346	New indoleâ€containing luminophores: convenient synthesis and aggregationâ€induced emission enhancement. Journal of Physical Organic Chemistry, 2009, 22, 241-246.	1.9	27
347	Two Types of Nonlinear Optical Polyurethanes Containing the Same Isolation Groups: Syntheses, Optical Properties, and Influence of Binding Mode. Journal of Physical Chemistry B, 2009, 113, 14943-14949.	2.6	35
348	New Indole-Based Light-Emitting Oligomers: Structural Modification, Photophysical Behavior, and Electroluminescent Properties. Journal of Physical Chemistry B, 2009, 113, 5816-5822.	2.6	36
349	New Azo-Chromophore-Containing Hyperbranched Polytriazoles Derived from AB ₂ Monomers via Click Chemistry under Copper(I) Catalysis. Macromolecules, 2009, 42, 1589-1596.	4.8	115
350	Dendronized Polyfluorenes with High Azo-Chromophore Loading Density: Convenient Synthesis and Enhanced Second-Order Nonlinear Optical Effects. Macromolecules, 2009, 42, 6463-6472.	4.8	42
351	Nonlinear Optical Dendrimers from Click Chemistry: Convenient Synthesis, New Function of the Formed Triazole Rings, and Enhanced NLO Effects. Macromolecules, 2009, 42, 3864-3868.	4.8	73
352	New Indole-Based Metal-Free Organic Dyes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry B, 2009, 113, 14588-14595.	2.6	72
353	Dendronlike Main-Chain Nonlinear Optical (NLO) Polyurethanes Constructed from "H―Type Chromophores: Synthesis and NLO Properties. ACS Applied Materials & Interfaces, 2009, 1, 856-863.	8.0	42
354	"H―shape second order NLO polymers: synthesis and characterization. Physical Chemistry Chemical Physics, 2009, 11, 1220.	2.8	30
355	New Carbazole-Based Fluorophores: Synthesis, Characterization, and Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry B, 2009, 113, 434-441.	2.6	168
356	New PVKâ€based nonlinear optical polymers: Enhanced nonlinearity and improved transparency. Journal of Polymer Science Part A, 2008, 46, 2983-2993.	2.3	57
357	New chemosensory materials based on disubstituted polyacetylene with strong green fluorescence. Journal of Polymer Science Part A, 2008, 46, 8070-8080.	2.3	25
358	New Azo Chromophoreâ€Containing Conjugated Polymers: Facile Synthesis by Using "Click―Chemistry and Enhanced Nonlinear Optical Properties Through the Introduction of Suitable Isolation Groups. Macromolecular Rapid Communications, 2008, 29, 136-141.	3.9	61
359	Polyurethanes Containing Indoleâ€Based Nonâ€Linear Optical Chromophores: from Linear Chromophore to Hâ€Type. Macromolecular Rapid Communications, 2008, 29, 798-803.	3.9	31
360	Labelâ€Free Fluorescent Probing of Gâ€Quadruplex Formation and Realâ€Time Monitoring of DNA Folding by a Quaternized Tetraphenylethene Salt with Aggregationâ€Induced Emission Characteristics. Chemistry - A European Journal, 2008, 14, 6428-6437.	3.3	264

#	Article	IF	CITATIONS
361	An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide. Macromolecules, 2008, 41, 7433-7439.	4.8	184
362	An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide. Chemical Communications, 2008, , 1094.	4.1	289
363	New Indole-Based Chromophore-Containing Main-Chain Polyurethanes:  Architectural Modification of Isolation Group, Enhanced Nonlinear Optical Property, and Improved Optical Transparency. Journal of Physical Chemistry B, 2008, 112, 4928-4933.	2.6	65
364	Nonlinear Optical Chromophores with Pyrrole Moieties as the Conjugated Bridge:  Enhanced NLO Effects and Interesting Optical Behavior. Journal of Physical Chemistry B, 2008, 112, 4545-4551.	2.6	86
365	Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Applied Physics Letters, 2007, 91, .	3.3	479
366	Aggregation-induced and crystallization-enhanced emissions of 1,2-diphenyl-3,4-bis(diphenylmethylene)-1-cyclobutene. Chemical Communications, 2007, , 3255.	4.1	257
367	Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chemical Communications, 2007, , 40-42.	4.1	384
368	Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE and AIEE effects. Chemical Communications, 2007, , 70-72.	4.1	381
369	Hyperbranched Poly(ferrocenylphenylenes):Â Synthesis, Characterization, Redox Activity, Metal Complexation, Pyrolytic Ceramization, and Soft Ferromagnetism. Macromolecules, 2007, 40, 8195-8204.	4.8	45
370	Convenient Attachment of Highly Polar Azo Chromophore Moieties to Disubstituted Polyacetylene through Polymer Reactions by Using "Click―Chemistry. Macromolecules, 2007, 40, 5634-5637.	4.8	146
371	From Controllable Attached Isolation Moieties to Possibly Highly Efficient Nonlinear Optical Main-Chain Polyurethanes Containing Indole-Based Chromophores. Journal of Physical Chemistry B, 2007, 111, 508-514.	2.6	87
372	Novel second-order nonlinear optical main-chain polyurethanes: Adjustable subtle structure, improved thermal stability and enhanced nonlinear optical property. Polymer, 2007, 48, 5520-5529.	3.8	62
373	Protein Detection and Quantitation by Tetraphenylethene-Based Fluorescent Probes with Aggregation-Induced Emission Characteristics. Journal of Physical Chemistry B, 2007, 111, 11817-11823.	2.6	309
374	Structural Control of the Side-Chain Chromophores To Achieve Highly Efficient Nonlinear Optical Polyurethanes. Macromolecules, 2006, 39, 6951-6961.	4.8	148
375	An Attempt To Modify Nonlinear Optical Effects of Polyurethanes by Adjusting the Structure of the Chromophore Moieties at the Molecular Level Using "Click―Chemistry. Macromolecules, 2006, 39, 8544-8546.	4.8	86
376	Facile Synthesis, Large Optical Nonlinearity, and Excellent Thermal Stability of Hyperbranched Poly(aryleneethynylene)s Containing Azobenzene Chromophores. Macromolecules, 2006, 39, 1436-1442.	4.8	111
377	Fluorescent "light-up―bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. Chemical Communications, 2006, , 3705-3707.	4.1	497
378	Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains. Journal of Polymer Science Part A, 2006, 44, 5672-5681.	2.3	34

#	Article	IF	CITATIONS
379	New hyperbranched polymers containing second-order nonlinear optical chromophores: Synthesis and nonlinear optical characterization. Polymer, 2006, 47, 7881-7888.	3.8	67
380	Synthesis and characterization of polysiloxanes containing carbazolyl and sulfonyl-indole based chromophore as side chains. Polymer, 2005, 46, 363-368.	3.8	47
381	Second-order nonlinear optical property of polyphosphazenes containing charge-transporting agents and indole-based chromophore. Polymer, 2005, 46, 4971-4978.	3.8	55
382	Vapochromism of Hexaphenylsilole. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 287-291.	3.7	107
383	Structural Control of the Photoluminescence of Silole Regioisomers and Their Utility as Sensitive Regiodiscriminating Chemosensors and Efficient Electroluminescent Materials. Journal of Physical Chemistry B, 2005, 109, 10061-10066.	2.6	349
384	A New Postfunctional Approach To Prepare Second-Order Nonlinear Optical Polyphophazenes Containing Sulfonyl-Based Chromophore. Macromolecules, 2004, 37, 371-376.	4.8	100
385	Polyphophazene Containing Indole-Based Dual Chromophores:Â Synthesis and Nonlinear Optical Characterization. Macromolecules, 2002, 35, 9232-9235.	4.8	90
386	Aggregation-Induced Emission Materials: the Art of Conjugation and Rotation. , 0, , 127-153.		1
387	POSS containing hyperbranched polymers as precursors for magnetic Co@C-SiOx ceramic nanocomposites with good sinter-resistant properties and high ceramic yield. Journal of Materials Chemistry C, 0, , .	5.5	0
388	From main-chain conjugated polymer photosensitizer to hyperbranched polymer photosensitizer: expansion of the polymerization-enhanced photosensitization effect for photodynamic therapy. Journal of Materials Chemistry B, O, , .	5.8	13