Jeffrey H Miner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118812/publications.pdf Version: 2024-02-01

		13099	13379
223	19,161	68	130
papers	citations	h-index	g-index
231	231	231	16422
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extracellular Matrix: Basement Membranes. , 2022, , 130-136.		1
2	Three-Dimensional Visualization of the Podocyte Actin Network Using Integrated Membrane Extraction, Electron Microscopy, and Machine Learning. Journal of the American Society of Nephrology: JASN, 2022, 33, 155-173.	6.1	11
3	NanoLuc reporters identify COL4A5 nonsense mutations susceptible to drug-induced stop codon readthrough. IScience, 2022, 25, 103891.	4.1	6
4	The 2019 and 2021 International Workshops on Alport Syndrome. European Journal of Human Genetics, 2022, 30, 507-516.	2.8	12
5	Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation. PLoS ONE, 2022, 17, e0270008.	2.5	4
6	Knockout of aminopeptidase A in mice causes functional alterations and morphological glomerular basement membrane changes in the kidneys. Kidney International, 2021, 99, 900-913.	5.2	2
7	Discoidin domain receptor 1 activation links extracellular matrix to podocyte lipotoxicity in Alport syndrome. EBioMedicine, 2021, 63, 103162.	6.1	27
8	Comprehensive Mouse Skin Ceramide Analysis on a Solid-Phase and TLC Separation with High-Resolution Mass Spectrometry Platform. Methods in Molecular Biology, 2021, 2306, 139-155.	0.9	0
9	Metformin ameliorates the severity of experimental Alport syndrome. Scientific Reports, 2021, 11, 7053.	3.3	18
10	Laminin \hat{I}^22 variants associated with isolated nephropathy that impact matrix regulation. JCI Insight, 2021, 6, .	5.0	2
11	EPB41L5 controls podocyte extracellular matrix assembly by adhesome-dependent force transmission. Cell Reports, 2021, 34, 108883.	6.4	19
12	Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nature Communications, 2021, 12, 2577.	12.8	31
13	Identification of an Altered Matrix Signature in Kidney Aging and Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 1713-1732.	6.1	45
14	Synaptopodin deficiency exacerbates kidney disease in a mouse model of Alport syndrome. American Journal of Physiology - Renal Physiology, 2021, 321, F12-F25.	2.7	17
15	Clear Evidence of LAMA5 Gene Biallelic Truncating Variants Causing Infantile Nephrotic Syndrome. Kidney360, 2021, 2, 1968-1978.	2.1	8
16	The importance of clinician, patient and researcher collaborations in Alport syndrome. Pediatric Nephrology, 2020, 35, 733-742.	1.7	15
17	Type IV collagen and diabetic kidney disease. Nature Reviews Nephrology, 2020, 16, 3-4.	9.6	14
18	Klotho regulation by albuminuria is dependent on ATF3 and endoplasmic reticulum stress. FASEB Journal, 2020, 34, 2087-2104.	0.5	19

#	Article	IF	CITATIONS
19	Mutations in <i>LAMB2</i> Are Associated With Albuminuria and Optic Nerve Hypoplasia With Hypopituitarism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 595-599.	3.6	7
20	Synaptopodin Is Dispensable for Normal Podocyte Homeostasis but Is Protective in the Context of Acute Podocyte Injury. Journal of the American Society of Nephrology: JASN, 2020, 31, 2815-2832.	6.1	33
21	Peroxidasin-mediated bromine enrichment of basement membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15827-15836.	7.1	21
22	Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biology, 2020, 90, 61-78.	3.6	38
23	Mammalian hemicentin 1 is assembled into tracks in the extracellular matrix of multiple tissues. Developmental Dynamics, 2020, 249, 775-788.	1.8	12
24	A deletion in the N-terminal polymerizing domain of laminin \hat{I}^22 is a new mouse model of chronic nephrotic syndrome. Kidney International, 2020, 98, 133-146.	5.2	10
25	Clinical trial recommendations for potential Alport syndrome therapies. Kidney International, 2020, 97, 1109-1116.	5.2	7
26	A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development (Cambridge), 2020, 147, .	2.5	28
27	Parietal epithelial cell differentiation to a podocyte fate in the aged mouse kidney. Aging, 2020, 12, 17601-17624.	3.1	25
28	Differential expression of parietal epithelial cell and podocyte extracellular matrix proteins in focal segmental glomerulosclerosis and diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2019, 317, F1680-F1694.	2.7	26
29	Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Scientific Reports, 2019, 9, 13254.	3.3	17
30	Alport Syndrome Therapeutics: Ready for Prime-Time Players. Trends in Pharmacological Sciences, 2019, 40, 803-806.	8.7	16
31	Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Translational Stroke Research, 2019, 10, 705-718.	4.2	35
32	Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward theÂadult podocyte fate. Kidney International, 2019, 96, 597-611.	5.2	42
33	Mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke. Acta Neuropathologica Communications, 2019, 7, 23.	5.2	21
34	Mutations in Recessive Congenital Ichthyoses Illuminate the Origin and Functions of the CorneocyteÂLipid Envelope. Journal of Investigative Dermatology, 2019, 139, 760-768.	0.7	41
35	Endothelial cell-specific collagen type IV-α ₃ expression does not rescue Alport syndrome in <i>Col4a3^{â^'}</i> ^{/â^'} mice. American Journal of Physiology - Renal Physiology, 2019, 316, F830-F837.	2.7	11
36	Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 1426-1436.	6.1	30

#	Article	IF	CITATIONS
37	Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biology, 2018, 71-72, 250-261.	3.6	82
38	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	6.4	177
39	Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 949-960.	6.1	27
40	Detection of renin lineage cell transdifferentiation to podocytes in the kidney glomerulus with dual lineage tracing. Kidney International, 2018, 93, 1240-1246.	5.2	30
41	Opposing Roles of Dendritic Cell Subsets in Experimental GN. Journal of the American Society of Nephrology: JASN, 2018, 29, 138-154.	6.1	65
42	Discs large 1 controls daughter-cell polarity after cytokinesis in vertebrate morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10859-E10868.	7.1	14
43	Alternative Pathway Is Essential for Glomerular Complement Activation and Proteinuria in a Mouse Model of Membranous Nephropathy. Frontiers in Immunology, 2018, 9, 1433.	4.8	47
44	What Is the Glomerular Ultrafiltration Barrier?. Journal of the American Society of Nephrology: JASN, 2018, 29, 2262-2264.	6.1	59
45	Homozygous KSR1 deletion attenuates morbidity but does not prevent tumor development in a mouse model of RAS-driven pancreatic cancer. PLoS ONE, 2018, 13, e0194998.	2.5	4
46	Advances and unmet needs in genetic, basic and clinical science in Alport syndrome: report from the 2015 International Workshop on Alport Syndrome. Nephrology Dialysis Transplantation, 2017, 32, gfw095.	0.7	40
47	Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nature Medicine, 2017, 23, 429-438.	30.7	282
48	Linear ion-trap MSn with high-resolution MS reveals structural diversity of 1-O-acylceramide family in mouse epidermis. Journal of Lipid Research, 2017, 58, 772-782.	4.2	11
49	Permeation of macromolecules into the renal glomerular basement membrane and capture by the tubules. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2958-2963.	7.1	92
50	Podocytes regulate the glomerular basement membrane protein nephronectin by means ofÂmiR-378a-3p in glomerular diseases. Kidney International, 2017, 92, 836-849.	5.2	55
51	Functional assessment of a novel COL4A5 splice region variant and immunostaining of plucked hair follicles as an alternative method of diagnosis in X-linked Alport syndrome. Pediatric Nephrology, 2017, 32, 997-1003.	1.7	22
52	CNS Neurons Deposit Laminin Î ± 5 to Stabilize Synapses. Cell Reports, 2017, 21, 1281-1292.	6.4	45
53	Glomerular mesangial cell recruitment and function require the co-receptor neuropilin-1. American Journal of Physiology - Renal Physiology, 2017, 313, F1232-F1242.	2.7	16
54	Ultrastructural Characterization of the Glomerulopathy in Alport Mice by Helium Ion Scanning Microscopy (HIM). Scientific Reports, 2017, 7, 11696.	3.3	13

Jeffrey H Miner

#	Article	IF	CITATIONS
55	Re-characterization of the Glomerulopathy in CD2AP Deficient Mice by High-Resolution Helium Ion Scanning Microscopy. Scientific Reports, 2017, 7, 8321.	3.3	18
56	Super-resolution Imaging of the Kidney Glomerulus in Health and Disease Conditions. Microscopy and Microanalysis, 2017, 23, 1318-1319.	0.4	0
57	B cell–derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight, 2017, 2, .	5.0	48
58	Injury-induced actin cytoskeleton reorganization in podocytes revealed by super-resolution microscopy. JCI Insight, 2017, 2, .	5.0	65
59	Muscular dystrophy meets protein biochemistry, the mother of invention. Journal of Clinical Investigation, 2017, 127, 798-800.	8.2	2
60	Requirement for basement membrane laminin α5 during urethral and external genital development. Mechanisms of Development, 2016, 141, 62-69.	1.7	7
61	Intravital and Kidney Slice Imaging of Podocyte Membrane Dynamics. Journal of the American Society of Nephrology: JASN, 2016, 27, 3285-3290.	6.1	50
62	Preface. Current Topics in Membranes, 2016, 77, xi-xiii.	0.9	0
63	Three-dimensional electron microscopy reveals the evolution of glomerular barrier injury. Scientific Reports, 2016, 6, 35068.	3.3	51
64	Albumin contributes to kidney disease progression in Alport syndrome. American Journal of Physiology - Renal Physiology, 2016, 311, F120-F130.	2.7	35
65	Mesencephalic Astrocyte–Derived Neurotrophic Factor as a Urine Biomarker for Endoplasmic Reticulum Stress–Related Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2016, 27, 2974-2982.	6.1	49
66	New insights into the mechanisms of podocyte health. Nature Reviews Nephrology, 2016, 12, 63-64.	9.6	9
67	A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight, 2016, 1, .	5.0	69
68	A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. Journal of Clinical Investigation, 2016, 126, 1067-1078.	8.2	41
69	Preface. Current Topics in Membranes, 2015, 76, xi-xiv.	0.9	0
70	Fatty Acid Transport Protein 1 Can Compensate for Fatty Acid Transport Protein 4 in the Developing Mouse Epidermis. Journal of Investigative Dermatology, 2015, 135, 462-470.	0.7	15
71	Albumin-associated free fatty acids induce macropinocytosis in podocytes. Journal of Clinical Investigation, 2015, 125, 2307-2316.	8.2	73
72	Loss of the Podocyte-Expressed Transcription Factor Tcf21/Pod1 Results in Podocyte Differentiation Defects and FSCS. Journal of the American Society of Nephrology: JASN, 2014, 25, 2459-2470.	6.1	52

#	Article	IF	CITATIONS
73	Pathology vs. molecular genetics: (re)defining the spectrum of Alport syndrome. Kidney International, 2014, 86, 1081-1083.	5.2	35
74	Feasibility of Repairing Glomerular Basement Membrane Defects in Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2014, 25, 687-692.	6.1	69
75	Neonatal Fc Receptor Promotes Immune Complex–Mediated Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 918-925.	6.1	29
76	Laminin α1 Regulates Age-Related Mesangial Cell Proliferation and Mesangial Matrix Accumulation through the TGF-β Pathway. American Journal of Pathology, 2014, 184, 1683-1694.	3.8	27
77	DLG1 influences distal ureter maturation via a non-epithelial cell autonomous mechanism involving reduced retinoic acid signaling, Ret expression, and apoptosis. Developmental Biology, 2014, 390, 160-169.	2.0	16
78	Defining Kidney Biology to Understand Renal Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 809-811.	4.5	12
79	A mouse Col4a4 mutation causing Alport glomerulosclerosis with abnormal collagen α3α4α5(IV) trimers. Kidney International, 2014, 85, 1461-1468.	5.2	48
80	The glomerular basement membrane as a barrier to albumin. Nature Reviews Nephrology, 2013, 9, 470-477.	9.6	146
81	Molecular and Cellular Mechanisms of Glomerular Capillary Development. , 2013, , 891-910.		Ο
82	Scaffolding Proteins DLG1 and CASK Cooperate to Maintain the Nephron Progenitor Population during Kidney Development. Journal of the American Society of Nephrology: JASN, 2013, 24, 1127-1138.	6.1	29
83	Fatty Acid Transport Protein 4 (FATP4) Prevents Light-Induced Degeneration of Cone and Rod Photoreceptors by Inhibiting RPE65 Isomerase. Journal of Neuroscience, 2013, 33, 3178-3189.	3.6	30
84	Requirement of Fatty Acid Transport Protein 4 for Development, Maturation, and Function of Sebaceous Glands in a Mouse Model of Ichthyosis Prematurity Syndrome. Journal of Biological Chemistry, 2013, 288, 3964-3976.	3.4	31
85	The Lutheran/Basal Cell Adhesion Molecule Promotes Tumor Cell Migration by Modulating Integrin-mediated Cell Attachment to Laminin-511 Protein. Journal of Biological Chemistry, 2013, 288, 30990-31001.	3.4	36
86	Laminin β2 Gene Missense Mutation Produces Endoplasmic Reticulum Stress in Podocytes. Journal of the American Society of Nephrology: JASN, 2013, 24, 1223-1233.	6.1	77
87	Rac1 Activation in Podocytes Induces Rapid Foot Process Effacement and Proteinuria. Molecular and Cellular Biology, 2013, 33, 4755-4764.	2.3	107
88	Proteolysis Breaks Tolerance toward Intact α345(IV) Collagen, Eliciting Novel Anti–Glomerular Basement Membrane Autoantibodies Specific for α345NC1 Hexamers. Journal of Immunology, 2013, 190, 1424-1432.	0.8	29
89	Laminin Î ± 5 guides tissue patterning and organogenesis. Cell Adhesion and Migration, 2013, 7, 90-100.	2.7	42
90	Nanoscale protein architecture of the kidney glomerular basement membrane. ELife, 2013, 2, e01149.	6.0	140

#	Article	IF	CITATIONS
91	Life Without Nephrin. Journal of the American Society of Nephrology: JASN, 2012, 23, 369-371.	6.1	13
92	Glomerular basement membrane and related glomerular disease. Translational Research, 2012, 160, 291-297.	5.0	36
93	Functional Consequences of Cell Type-Restricted Expression of Laminin α5 in Mouse Placental Labyrinth and Kidney Glomerular Capillaries. PLoS ONE, 2012, 7, e41348.	2.5	12
94	The glomerular basement membrane. Experimental Cell Research, 2012, 318, 973-978.	2.6	231
95	Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance. PLoS ONE, 2012, 7, e36705.	2.5	50
96	Basement Membranes. , 2011, , 117-145.		6
97	The Expression and Function of Fatty Acid Transport Protein-2 and -4 in the Murine Placenta. PLoS ONE, 2011, 6, e25865.	2.5	57
98	Glomerular basement membrane composition and the filtration barrier. Pediatric Nephrology, 2011, 26, 1413-1417.	1.7	111
99	Organogenesis of the kidney glomerulus. Organogenesis, 2011, 7, 75-82.	1.2	59
100	Role of fatty acid transporters in epidermis. Dermato-Endocrinology, 2011, 3, 53-61.	1.8	59
101	Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model for Pierson syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15348-15353.	7.1	52
102	Wnt/β-Catenin Pathway in Podocytes Integrates Cell Adhesion, Differentiation, and Survival. Journal of Biological Chemistry, 2011, 286, 26003-26015.	3.4	166
103	A Missense LAMB2 Mutation Causes Congenital Nephrotic Syndrome by Impairing Laminin Secretion. Journal of the American Society of Nephrology: JASN, 2011, 22, 849-858.	6.1	50
104	Dystroglycan does not contribute significantly to kidney development or function, in health or after injury. American Journal of Physiology - Renal Physiology, 2011, 300, F811-F820.	2.7	29
105	Biophysical properties of normal and diseased renal glomeruli. American Journal of Physiology - Cell Physiology, 2011, 300, C397-C405.	4.6	91
106	Restrictive dermopathy and <i>ZMPSTE24</i> mutations in Mennonites: Evidence for allelic heterogeneity. American Journal of Medical Genetics, Part A, 2010, 152A, 2140-2141.	1.2	2
107	The biodistribution of [¹⁵³ Gd]Gdâ€labeled magnetic resonance contrast agents in a transgenic mouse model of renal failure differs greatly from control mice. Magnetic Resonance in Medicine, 2010, 64, 1274-1280.	3.0	22
108	Activation of NFAT Signaling in Podocytes Causes Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1657-1666.	6.1	132

#	Article	IF	CITATIONS
109	Maintenance of Glomerular Filtration Barrier Integrity Requires Laminin α5. Journal of the American Society of Nephrology: JASN, 2010, 21, 579-586.	6.1	65
110	Epidermal hyperproliferation in mice lacking fatty acid transport protein 4 (FATP4) involves ectopic EGF receptor and STAT3 signaling. Developmental Biology, 2010, 344, 707-719.	2.0	15
111	The Extracellular Matrix: An Overview. , 2010, , 1-17.		5
112	Clomerular filtration is normal in the absence of both agrin and perlecan–heparan sulfate from the glomerular basement membrane. Nephrology Dialysis Transplantation, 2009, 24, 2044-2051.	0.7	97
113	Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. Journal of Lipid Research, 2009, 50, 491-500.	4.2	71
114	Albuminuria, Wherefore Art Thou?. Journal of the American Society of Nephrology: JASN, 2009, 20, 455-457.	6.1	15
115	The enigmatic parietal epithelial cell is finally getting noticed: a review. Kidney International, 2009, 76, 1225-1238.	5.2	63
116	The Pax3â€Cre transgene exhibits a rostrocaudal gradient of expression in the skeletal muscle lineage. Genesis, 2009, 47, 1-6.	1.6	18
117	Update on the glomerular filtration barrier. Current Opinion in Nephrology and Hypertension, 2009, 18, 226-232.	2.0	109
118	Laminins and their roles in mammals. Microscopy Research and Technique, 2008, 71, 349-356.	2.2	155
119	β1 integrin expression by podocytes is required to maintain glomerular structural integrity. Developmental Biology, 2008, 316, 288-301.	2.0	161
120	Glomerular filtration: the charge debate charges ahead. Kidney International, 2008, 74, 259-261.	5.2	26
121	Laminin $\hat{I}\pm 5$ influences the architecture of the mouse small intestine mucosa. Journal of Cell Science, 2008, 121, 2493-2502.	2.0	64
122	Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrology Dialysis Transplantation, 2008, 24, 731-734.	0.7	40
123	A Potent HIV Protease Inhibitor, Darunavir, Does Not Inhibit ZMPSTE24 or Lead to an Accumulation of Farnesyl-prelamin A in Cells. Journal of Biological Chemistry, 2008, 283, 9797-9804.	3.4	57
124	Podocyte-Derived BMP7 Is Critical for Nephron Development. Journal of the American Society of Nephrology: JASN, 2008, 19, 2181-2191.	6.1	57
125	Podocytes use FcRn to clear IgG from the glomerular basement membrane. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 967-972.	7.1	233
126	Podocyte-Specific Deletion of Dicer Alters Cytoskeletal Dynamics and Causes Glomerular Disease. Journal of the American Society of Nephrology: JASN, 2008, 19, 2150-2158.	6.1	300

#	Article	IF	CITATIONS
127	Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity. PLoS Biology, 2008, 6, e123.	5.6	161
128	Laminins promote postsynaptic maturation by an autocrine mechanism at the neuromuscular junction. Journal of Cell Biology, 2008, 182, 1201-1215.	5.2	124
129	Revisiting the glomerular charge barrier in the molecular era. Current Opinion in Nephrology and Hypertension, 2008, 17, 393-398.	2.0	39
130	Molecular and Cellular Mechanisms of Glomerular Capillary Development. , 2008, , 691-706.		1
131	Fatty Acid Transport Protein 4 Is the Principal Very Long Chain Fatty Acyl-CoA Synthetase in Skin Fibroblasts. Journal of Biological Chemistry, 2007, 282, 20573-20583.	3.4	97
132	The LG1-3 Tandem of Laminin α5 Harbors the Binding Sites of Lutheran/Basal Cell Adhesion Molecule and α3β1/α6β1 Integrins*. Journal of Biological Chemistry, 2007, 282, 14853-14860.	3.4	59
133	Breaking Down the Barrier: Evidence against a Role for Heparan Sulfate in Glomerular Permselectivity. Journal of the American Society of Nephrology: JASN, 2007, 18, 672-674.	6.1	9
134	Partial Rescue of Glomerular Laminin α5 Mutations by Wild-Type Endothelia Produce Hybrid Glomeruli. Journal of the American Society of Nephrology: JASN, 2007, 18, 2285-2293.	6.1	19
135	Impaired Glomerular Maturation and Lack of VEGF165b in Denys-Drash Syndrome. Journal of the American Society of Nephrology: JASN, 2007, 18, 719-729.	6.1	60
136	Laminin Compensation in Collagen α3(IV) Knockout (Alport) Glomeruli Contributes to Permeability Defects. Journal of the American Society of Nephrology: JASN, 2007, 18, 2465-2472.	6.1	55
137	Keratinocyte-specific Expression of Fatty Acid Transport Protein 4 Rescues the Wrinkle-free Phenotype in Slc27a4/Fatp4 Mutant Mice. Journal of Biological Chemistry, 2007, 282, 15912-15920.	3.4	45
138	Laminin Î ± 5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through Î 21 integrin signaling. Developmental Biology, 2007, 308, 15-29.	2.0	125
139	Disruption of Glomerular Basement Membrane Charge through Podocyte-Specific Mutation of Agrin Does Not Alter Glomerular Permselectivity. American Journal of Pathology, 2007, 171, 139-152.	3.8	153
140	Increased progerin expression associated with unusualLMNAmutations causes severe progeroid syndromes. Human Mutation, 2007, 28, 882-889.	2.5	103
141	Laminins regulate cryptâ€villus architecture and epithelial cell behavior in the mouse intestine. FASEB Journal, 2007, 21, A43.	0.5	0
142	Role of COL4A1 in Small-Vessel Disease and Hemorrhagic Stroke. New England Journal of Medicine, 2006, 354, 1489-1496.	27.0	486
143	Abnormalities in neural crest cell migration in laminin α5 mutant mice. Developmental Biology, 2006, 289, 218-228.	2.0	65
144	Molecular dissection of laminin α5 in vivo reveals separable domain-specific roles in embryonic development and kidney function. Developmental Biology, 2006, 296, 265-277.	2.0	40

#	Article	IF	CITATIONS
145	Laminin-10 and Lutheran blood group glycoproteins in adhesion of human endothelial cells. American Journal of Physiology - Cell Physiology, 2006, 290, C764-C775.	4.6	29
146	Vascular Endothelial Growth Factor A Signaling in the Podocyte-Endothelial Compartment Is Required for Mesangial Cell Migration and Survival. Journal of the American Society of Nephrology: JASN, 2006, 17, 724-735.	6.1	217
147	Loss of α3/α4(IV) Collagen from the Clomerular Basement Membrane Induces a Strain-Dependent Isoform Switch to α5α6(IV) Collagen Associated with Longer Renal Survival in Col4a3 â^'/â^' Alport Mice. Journal of the American Society of Nephrology: JASN, 2006, 17, 1962-1969.	6.1	60
148	Podocyte-Specific Deletion of Integrin-Linked Kinase Results in Severe Glomerular Basement Membrane Alterations and Progressive Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2006, 17, 1334-1344.	6.1	137
149	Transgenic isolation of skeletal muscle and kidney defects in lamininβ2 mutant mice: implications for Pierson syndrome. Development (Cambridge), 2006, 133, 967-975.	2.5	72
150	Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19872-19877.	7.1	93
151	A Hypomorphic Mutation in the Mouse Laminin α5 Gene Causes Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2006, 17, 1913-1922.	6.1	112
152	Laminin Î ± 5 Is Required for Dental Epithelium Growth and Polarity and the Development of Tooth Bud and Shape. Journal of Biological Chemistry, 2006, 281, 5008-5016.	3.4	100
153	Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. Journal of Clinical Investigation, 2006, 116, 1337-1345.	8.2	137
154	Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. Journal of Clinical Investigation, 2006, 116, 2272-2279.	8.2	201
155	Homozygous and Compound Heterozygous Mutations in ZMPSTE24 Cause the Laminopathy Restrictive Dermopathy. Journal of Investigative Dermatology, 2005, 125, 913-919.	0.7	128
156	Coordinate control of axon defasciculation and myelination by laminin-2 and -8. Journal of Cell Biology, 2005, 168, 655-666.	5.2	147
157	Review: Lutheran/B-CAM: A Laminin Receptor on Red Blood Cells and in Various Tissues. Connective Tissue Research, 2005, 46, 193-199.	2.3	50
158	Blocking protein farnesyltransferase improves nuclear shape in fibroblasts from humans with progeroid syndromes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12873-12878.	7.1	254
159	Distinct Epitopes for Anti–Glomerular Basement Membrane Alport Alloantibodies and Goodpasture Autoantibodies within the Noncollagenous Domain of α3(IV) Collagen. Journal of the American Society of Nephrology: JASN, 2005, 16, 3563-3571.	6.1	46
160	Building the Glomerulus. Journal of the American Society of Nephrology: JASN, 2005, 16, 857-861.	6.1	66
161	A Chemotactic Peptide from Laminin α5 Functions as a Regulator of Inflammatory Immune Responses via TNFα-mediated Signaling. Journal of Immunology, 2005, 174, 1621-1629.	0.8	46
162	Transient expression of laminin ?1 chain in regenerating murine liver: Restricted localization of laminin chains and nidogen-1. Experimental Cell Research, 2005, 305, 99-109.	2.6	33

#	Article	IF	CITATIONS
163	Erratum to "Transient expression of laminin α1 chain in regenerating murine liver: Restricted localization of laminin chains and nidogen-1―[Exp. Cell Res. 305 (2005) 99–109]. Experimental Cell Research, 2005, 308, 491-492.	2.6	0
164	A simplified laminin nomenclature. Matrix Biology, 2005, 24, 326-332.	3.6	760
165	The immortalized human corneal epithelial cells adhere to laminin-10 by using Lutheran glycoproteins and integrin α3β1. Experimental Eye Research, 2005, 81, 415-421.	2.6	7
166	Epithelial laminin $\hat{l}\pm 5$ is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung. Developmental Biology, 2005, 282, 111-125.	2.0	81
167	β1-Integrins Are Critical for Cerebellar Granule Cell Precursor Proliferation. Journal of Neuroscience, 2004, 24, 3402-3412.	3.6	112
168	Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development (Cambridge), 2004, 131, 2247-2256.	2.5	272
169	LAMININ FUNCTIONS IN TISSUE MORPHOGENESIS. Annual Review of Cell and Developmental Biology, 2004, 20, 255-284.	9.4	646
170	Laminins α2 and α4 in Pancreatic Acinar Basement Membranes Are Required for Basal Receptor Localization. Journal of Histochemistry and Cytochemistry, 2004, 52, 153-156.	2.5	22
171	Laminin-10 is crucial for hair morphogenesis. EMBO Journal, 2003, 22, 2400-2410.	7.8	135
172	Expression of laminin chains by central neurons: Analysis with gene and protein trapping techniques. Genesis, 2003, 36, 114-127.	1.6	41
173	Of laminins and delamination in Alport syndrome. Kidney International, 2003, 63, 1158-1159.	5.2	3
174	Laminin α5 chain is required for intestinal smooth muscle development. Developmental Biology, 2003, 260, 376-390.	2.0	66
175	A Molecular Look at the Glomerular Barrier. Nephron Experimental Nephrology, 2003, 94, e119-e122.	2.2	22
176	TGF-β1 Induces Aberrant Laminin Chain and Collagen Type IV Isotype Expression in the Glomerular Basement Membrane. Nephron Experimental Nephrology, 2003, 94, e123-e136.	2.2	19
177	Mesangial cells organize the glomerular capillaries by adhering to the G domain of laminin α5 in the glomerular basement membrane. Journal of Cell Biology, 2003, 161, 187-196.	5.2	113
178	A Site on Laminin Î \pm 5, AQARSAASKVKVSMKF, Induces Inflammatory Cell Production of Matrix Metalloproteinase-9 and Chemotaxis. Journal of Immunology, 2003, 171, 398-406.	0.8	106
179	CD2-Associated Protein Haploinsufficiency Is Linked to Glomerular Disease Susceptibility. Science, 2003, 300, 1298-1300.	12.6	435
180	Cloning of wrinkle-free, a previously uncharacterized mouse mutation, reveals crucial roles for fatty acid transport protein 4 in skin and hair development. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5274-5279.	7.1	96

#	Article	IF	CITATIONS
181	Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. Journal of Clinical Investigation, 2003, 111, 707-716.	8.2	1,100
182	A Mutant Form of the Wilms' Tumor Suppressor Gene WT1 Observed in Denys-Drash Syndrome Interferes with Glomerular Capillary Development. Journal of the American Society of Nephrology: JASN, 2002, 13, 2058-2067.	6.1	59
183	Identification of the Binding Site for the Lutheran Blood Group Glycoprotein on Laminin α5 through Expression of Chimeric Laminin Chains in Vivo. Journal of Biological Chemistry, 2002, 277, 44864-44869.	3.4	81
184	Focusing on the Glomerular Slit Diaphragm. American Journal of Pathology, 2002, 160, 3-5.	3.8	31
185	Quantitative Trait Loci Influence Renal Disease Progression in a Mouse Model of Alport Syndrome. American Journal of Pathology, 2002, 160, 721-730.	3.8	100
186	Laminets: Laminin- and Netrin-Related Genes Expressed in Distinct Neuronal Subsets. Molecular and Cellular Neurosciences, 2002, 19, 344-358.	2.2	82
187	Laminin Î ± 5 Is Required for Lobar Septation and Visceral Pleural Basement Membrane Formation in the Developing Mouse Lung. Developmental Biology, 2002, 246, 231-244.	2.0	87
188	Domain IV of mouse laminin \hat{l}^21 and $\hat{l}^22\hat{a} \in f$ chains. FEBS Journal, 2002, 269, 431-442.	0.2	64
189	Red cell traverse through thin glomerular basement membrane. Kidney International, 2002, 61, 762-763.	5.2	15
190	Transcriptional induction of slit diaphragm genes by Lmx1b is required in podocyte differentiation. Journal of Clinical Investigation, 2002, 109, 1065-1072.	8.2	82
191	CD2AP Localizes to the Slit Diaphragm and Binds to Nephrin via a Novel C-Terminal Domain. American Journal of Pathology, 2001, 159, 2303-2308.	3.8	251
192	Glomerular laminin isoform transitions: errors in metanephric culture are corrected by grafting. American Journal of Physiology - Renal Physiology, 2001, 280, F695-F705.	2.7	30
193	CD2-associated protein and the kidney. Current Opinion in Nephrology and Hypertension, 2001, 10, 19-22.	2.0	24
194	Localization of Lutheran, a novel laminin receptor, in normal, knockout, and transgenic mice suggests an interaction with laminin ?5 in vivo. Developmental Dynamics, 2001, 222, 101-114.	1.8	69
195	Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Nature Genetics, 2001, 27, 205-208.	21.4	189
196	Mystery solved. Journal of Cell Biology, 2001, 154, 257-260.	5.2	46
197	Abnormal Glomerular Basement Membrane Laminins in Murine, Canine, and Human Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2001, 12, 252-260.	6.1	82
198	The Presynaptic Calcium Channel Is Part of a Transmembrane Complex Linking a Synaptic Laminin (α4β2γ1) with Non-Erythroid Spectrin. Journal of Neuroscience, 2000, 20, 1009-1019.	3.6	63

#	Article	IF	CITATIONS
199	The Synaptic Vesicle Protein SV2 Is Complexed with an α5-Containing Laminin on the Nerve Terminal Surface. Journal of Biological Chemistry, 2000, 275, 451-460.	3.4	46
200	Expression Patterns of Laminin Î \pm 1 and Î \pm 5 in Human Lung during Development. American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 742-747.	2.9	34
201	Defective Glomerulogenesis in the Absence of Laminin α5 Demonstrates a Developmental Role for the Kidney Glomerular Basement Membrane. Developmental Biology, 2000, 217, 278-289.	2.0	244
202	Gelatinase B (MMP-9) Is Not Essential in the Normal Kidney and Does Not Influence Progression of Renal Disease in a Mouse Model of Alport Syndrome. American Journal of Pathology, 2000, 157, 303-311.	3.8	55
203	Identification and expression of mouse netrin-4. Mechanisms of Development, 2000, 96, 115-119.	1.7	88
204	Cell Elongation Induces Laminin α2 Chain Expression in Mouse Embryonic Mesenchymal Cells. Journal of Cell Biology, 1999, 147, 1341-1350.	5.2	52
205	Adhesion of Cultured Bovine Aortic Endothelial Cells to Laminin-1 Mediated by Dystroglycan. Journal of Biological Chemistry, 1999, 274, 11995-12000.	3.4	62
206	Renal basement membrane components. Kidney International, 1999, 56, 2016-2024.	5.2	291
207	Congenital Nephrotic Syndrome in Mice Lacking CD2-Associated Protein. Science, 1999, 286, 312-315.	12.6	748
208	Distribution of ten laminin chains in dystrophic and regenerating muscles. Neuromuscular Disorders, 1999, 9, 423-433.	0.6	77
209	Laminin-11. International Journal of Biochemistry and Cell Biology, 1999, 31, 811-816.	2.8	38
210	Alport Syndrome with Diffuse Leiomyomatosis. American Journal of Pathology, 1999, 154, 1633-1635.	3.8	20
211	Insertional Mutation of the Collagen Genes Col4a3 and Col4a4 in a Mouse Model of Alport Syndrome. Genomics, 1999, 61, 113-124.	2.9	67
212	Sex-specific localization of laminin α5 chain in the differentiating rat testis and ovary. Differentiation, 1999, 64, 151.	1.9	13
213	Regulation of Renal Laminin in Mice with Type II Diabetes. Journal of the American Society of Nephrology: JASN, 1999, 10, 1931-1939.	6.1	44
214	Title is missing!. The Histochemical Journal, 1998, 30, 375-381.	0.6	1
215	Human Corneal Epithelial Basement Membrane and Integrin Alterations in Diabetes and Diabetic Retinopathy ¹ . Journal of Histochemistry and Cytochemistry, 1998, 46, 1033-1041.	2.5	107
216	Expression of Laminin α ₃ , α ₄ , and α ₅ Chains by Alveolar Epithelial Cells and Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 1998, 19, 237-244.	2.9	70

#	Article	IF	CITATIONS
217	Roles for Laminin in Embryogenesis: Exencephaly, Syndactyly, and Placentopathy in Mice Lacking the Laminin α5 Chain. Journal of Cell Biology, 1998, 143, 1713-1723.	5.2	430
218	Distribution and Function of Laminins in the Neuromuscular System of Developing, Adult, and Mutant Mice. Journal of Cell Biology, 1997, 139, 1507-1521.	5.2	404
219	The Laminin α Chains: Expression, Developmental Transitions, and Chromosomal Locations of α1-5, Identification of Heterotrimeric Laminins 8–11, and Cloning of a Novel α3 Isoform. Journal of Cell Biology, 1997, 137, 685-701.	5.2	628
220	Expression of type IV collagen α1(IV)–α6(IV) polypeptides in normal and developing human kidney and in renal cell carcinomas and oncocytomas. , 1997, 72, 43-49.		46
221	The renal glomerulus of mice lacking s–laminin/laminin β2: nephrosis despite molecular compensation by laminin β1. Nature Genetics, 1995, 10, 400-406.	21.4	384
222	Molecular Cloning of a Novel Laminin Chain, α5, and Widespread Expression in Adult Mouse Tissues. Journal of Biological Chemistry, 1995, 270, 28523-28526.	3.4	229
223	Laminin beta 2. The AFCS-nature Molecule Pages, 0, , .	0.2	0