Ashley I. Naimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118786/publications.pdf Version: 2024-02-01

ASHLEY | NAIMI

#	Article	IF	CITATIONS
1	Challenges in Obtaining Valid Causal Effect Estimates With Machine Learning Algorithms. American Journal of Epidemiology, 2023, 192, 1536-1544.	3.4	30
2	Performance Evaluation of Parametric and Nonparametric Methods When Assessing Effect Measure Modification. American Journal of Epidemiology, 2022, 191, 198-207.	3.4	2
3	The Role of the Natural Course in Causal Analysis. American Journal of Epidemiology, 2022, 191, 341-348.	3.4	6
4	Can Ensemble Machine Learning Improve the Accuracy of Severe Maternal Morbidity Screening in a Perinatal Database?. Epidemiology, 2022, 33, 95-104.	2.7	4
5	Does weight mediate the effect of smoking on coronary heart disease? Parametric mediational g-formula analysis. PLoS ONE, 2022, 17, e0262403.	2.5	4
6	Use of a Doubly Robust Machine-Learning–Based Approach to Evaluate Body Mass Index as a Modifier of the Association Between Fruit and Vegetable Intake and Preeclampsia. American Journal of Epidemiology, 2022, 191, 1396-1406.	3.4	3
7	Use of Machine Learning to Estimate the Per-Protocol Effect of Low-Dose Aspirin on Pregnancy Outcomes. JAMA Network Open, 2022, 5, e2143414.	5.9	6
8	Equal Weighting of the Healthy Eating Index–2010 Components May Not be Appropriate for Pregnancy. Journal of Nutrition, 2022, 152, 1886-1894.	2.9	3
9	Machine learning can improve the development of evidence-based dietary guidelines. Public Health Nutrition, 2022, 25, 2566-2569.	2.2	1
10	Simulation as a Tool for Teaching and Learning Epidemiologic Methods. American Journal of Epidemiology, 2021, 190, 900-907.	3.4	6
11	Defining, Quantifying, and Interpreting "Noncollapsibility―in Epidemiologic Studies of Measures of "Effect― American Journal of Epidemiology, 2021, 190, 697-700.	3.4	5
12	Incremental Propensity Score Effects for Time-fixed Exposures. Epidemiology, 2021, 32, 202-208.	2.7	5
13	SIMULATION IN PRACTICE: THE BALANCING INTERCEPT. American Journal of Epidemiology, 2021, 190, 1696-1698.	3.4	3
14	The Effect of Preconception-Initiated Low-Dose Aspirin on Human Chorionic Gonadotropin–Detected Pregnancy, Pregnancy Loss, and Live Birth. Annals of Internal Medicine, 2021, 174, 595-601.	3.9	18
15	<i>AIPW</i> : An R Package for Augmented Inverse Probability–Weighted Estimation of Average Causal Effects. American Journal of Epidemiology, 2021, 190, 2690-2699.	3.4	17
16	Practical Strategies for Mitigating the Unknowable. American Journal of Epidemiology, 2021, , .	3.4	0
17	Reflection on modern methods: demystifying robust standard errors for epidemiologists. International Journal of Epidemiology, 2021, 50, 346-351.	1.9	88
18	Incremental intervention effects in studies with dropout and many timepoints#. Journal of Causal Inference, 2021, 9, 302-344.	1.2	3

#	Article	IF	CITATIONS
19	Visualization tool of variable selection in bias–variance tradeoff for inverse probability weights. Annals of Epidemiology, 2020, 41, 56-59.	1.9	1
20	Teaching yourself about structural racism will improve your machine learning. Biostatistics, 2020, 21, 339-344.	1.5	31
21	Mediation analysis for estimating cardioprotection of longitudinal RAS inhibition beyond lowering blood pressure and albuminuria in type 1 diabetes. Annals of Epidemiology, 2020, 41, 7-13.e1.	1.9	4
22	Life-course impact of child maltreatment on midlife health-related quality of life in women: longitudinal mediation analysis for potential pathways. Annals of Epidemiology, 2020, 43, 58-65.	1.9	7
23	Causal Inference in the Face of Competing Events. Current Epidemiology Reports, 2020, 7, 125-131.	2.4	11
24	Defining and Identifying Per-protocol Effects in Randomized Trials. Epidemiology, 2020, 31, 692-694.	2.7	7
25	The Impact of Undersampling on the Predictive Performance of Logistic Regression and Machine Learning Algorithms. Epidemiology, 2020, 31, e42-e44.	2.7	6
26	Hidden Imputations and the Kaplan-Meier Estimator. American Journal of Epidemiology, 2020, 189, 1408-1411.	3.4	11
27	Machine learning as a strategy to account for dietary synergy: an illustration based on dietary intake and adverse pregnancy outcomes. American Journal of Clinical Nutrition, 2020, 111, 1235-1243.	4.7	32
28	Association of Overweight and Obesity Development Between Pregnancies With Stillbirth and Infant Mortality in a Cohort of Multiparous Women. Obstetrics and Gynecology, 2020, 135, 634-643.	2.4	11
29	Things Don't Always Go as Expected: The Example of Nondifferential Misclassification of Exposure—Bias and Error. American Journal of Epidemiology, 2020, 189, 365-368.	3.4	23
30	Can Confidence Intervals Be Interpreted?. American Journal of Epidemiology, 2020, 189, 631-633.	3.4	8
31	Vaginal bleeding and nausea in early pregnancy as predictors of clinical pregnancy loss. American Journal of Obstetrics and Gynecology, 2020, 223, 570.e1-570.e14.	1.3	7
32	Estimating Risk Ratios and Risk Differences Using Regression. American Journal of Epidemiology, 2020, 189, 508-510.	3.4	93
33	Effects of Hypothetical Interventions on Ischemic Stroke Using Parametric G-Formula. Stroke, 2019, 50, 3286-3288.	2.0	20
34	The Authors Respond to "lssues With the Consecutive-Pregnancies Approach― American Journal of Epidemiology, 2019, 188, 1343-1344.	3.4	0
35	Effect of preconception low dose aspirin on pregnancy and live birth according to socioeconomic status: A secondary analysis of a randomized clinical trial. PLoS ONE, 2019, 14, e0200533.	2.5	2
36	Comparison of Parametric and Nonparametric Estimators for the Association Between Incident Prepregnancy Obesity and Stillbirth in a Population-Based Cohort Study. American Journal of Epidemiology, 2019, 188, 1328-1336.	3.4	7

#	Article	IF	CITATIONS
37	Obtaining Actionable Inferences from Epidemiologic Actions. Epidemiology, 2019, 30, 243-245.	2.7	3
38	Metabolic Syndrome and the Effectiveness of Low-dose Aspirin on Reproductive Outcomes. Epidemiology, 2019, 30, 573-581.	2.7	4
39	The Implications of Using Lagged and Baseline Exposure Terms in Longitudinal Causal and Regression Models. American Journal of Epidemiology, 2019, 188, 753-759.	3.4	19
40	Analysis of â€̃sensitive' periods of fetal and child growth. International Journal of Epidemiology, 2019, 48, 116-123.	1.9	21
41	Stacked generalization: an introduction to super learning. European Journal of Epidemiology, 2018, 33, 459-464.	5.7	191
42	The Role of Preterm Birth in the Association Between Opioid Maintenance Therapy and Neonatal Abstinence Syndrome. Paediatric and Perinatal Epidemiology, 2018, 32, 213-222.	1.7	23
43	Inverse Probability Weights for the Analysis of Polytomous Outcomes. American Journal of Epidemiology, 2018, 187, 1125-1127.	3.4	2
44	Effect of Population-Specific Birthweight Curves on Disparities in Perinatal Mortality in Small-for-Gestational Age Pregnancies. American Journal of Perinatology, 2018, 35, 695-702.	1.4	1
45	The Impact of Computing Interpregnancy Intervals Without Accounting for Intervening Pregnancy Events. Paediatric and Perinatal Epidemiology, 2018, 32, 141-148.	1.7	15
46	Preconception Blood Pressure Levels and Reproductive Outcomes in a Prospective Cohort of Women Attempting Pregnancy. Hypertension, 2018, 71, 904-910.	2.7	32
47	Machine Learning for Fetal Growth Prediction. Epidemiology, 2018, 29, 290-298.	2.7	27
48	Optimal Timing of Physician Visits after Hospital Discharge to Reduce Readmission. Health Services Research, 2018, 53, 4682-4703.	2.0	17
49	Differential impact of socioeconomic position across life on oral cancer risk in Kerala, India: An investigation of life ourse models under a timeâ€varying framework. Community Dentistry and Oral Epidemiology, 2018, 46, 592-600.	1.9	6
50	Child maltreatment as a social determinant of midlife health-related quality of life in women: do psychosocial factors explain this association?. Quality of Life Research, 2018, 27, 3243-3254.	3.1	14
51	An Introduction to G Methods. International Journal of Epidemiology, 2017, 46, dyw323.	1.9	132
52	Team-based versus traditional primary care models and short-term outcomes after hospital discharge. Cmaj, 2017, 189, E585-E593.	2.0	21
53	On wagging tales about causal inference. International Journal of Epidemiology, 2017, 46, 1340-1342.	1.9	17
54	The Author Responds. Epidemiology, 2017, 28, e50-e51.	2.7	1

#	Article	IF	CITATIONS
55	Impact of Food Insecurity on Depressive Symptoms Among HIV–HCV Co-infected People. AIDS and Behavior, 2017, 21, 3464-3472.	2.7	6
56	Team-based innovations in primary care delivery in Quebec and timely physician follow-up after hospital discharge: a population-based cohort study. CMAJ Open, 2017, 5, E28-E35.	2.4	4
57	A multistate framework for the analysis of subsequent injury in sport (<scp>Mâ€FASIS</scp>). Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 128-139.	2.9	23
58	Cumulative risk of stillbirth in the presence of competing events. BJOG: an International Journal of Obstetrics and Gynaecology, 2016, 123, 1071-1074.	2.3	5
59	Prepregnancy obesity and the racial disparity in infant mortality. Obesity, 2016, 24, 2578-2584.	3.0	7
60	Delivery at Term: Impact of University Education by Week of Gestation. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 118-124.	0.7	9
61	Comparison of stillbirth rates by cause among Haitians and nonâ€Haitians in Canada. International Journal of Gynecology and Obstetrics, 2016, 134, 315-319.	2.3	2
62	Mediation Analysis for Health Disparities Research. American Journal of Epidemiology, 2016, 184, 315-324.	3.4	73
63	Prevalence and predictors of burnout among obstetrics and gynecology residents in Canada. Gynecological Surgery, 2016, 13, 323-327.	0.9	13
64	Mediation, interaction, interference for social epidemiology. International Journal of Epidemiology, 2016, 45, dyw279.	1.9	4
65	Commentary. Epidemiology, 2016, 27, 843-847.	2.7	13
66	The Counterfactual Implications of Fundamental Cause Theory. Current Epidemiology Reports, 2016, 3, 92-97.	2.4	6
67	Methodological challenges in studying the causal determinants of child growth. International Journal of Epidemiology, 2016, 45, dyw090.	1.9	10
68	Three alternative methods to resolve paradoxical associations of exposures before term. European Journal of Epidemiology, 2016, 31, 1011-1019.	5.7	9
69	Secular Trends in Preeclampsia Incidence and Outcomes in a Large Canada Database: A Longitudinal Study Over 24 Years. Canadian Journal of Cardiology, 2016, 32, 987.e15-987.e23.	1.7	47
70	Commentary. Epidemiology, 2015, 26, 27-29.	2.7	4
71	2014 Articles of the Year, Reviewers of the Year, and Figure of the Year. American Journal of Epidemiology, 2015, 181, 221-222.	3.4	1
72	Invited Commentary: Boundless Science—Putting Natural Direct and Indirect Effects in a Clearer Empirical Context: Figure 1 American Journal of Epidemiology, 2015, 182, 109-114.	3.4	9

#	Article	IF	CITATIONS
73	Counterfactual Theory in Social Epidemiology: Reconciling Analysis and Action for the Social Determinants of Health. Current Epidemiology Reports, 2015, 2, 52-60.	2.4	21
74	Population-Wide Folic Acid Fortification and Preterm Birth: Testing the Folate Depletion Hypothesis. American Journal of Public Health, 2015, 105, 793-795.	2.7	2
75	Invited Commentary: Estimating Population Impact in the Presence of Competing Events. American Journal of Epidemiology, 2015, 181, 571-574.	3.4	6
76	Human Chorionic Gonadotropin Partially Mediates Phthalate Association With Male and Female Anogenital Distance. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1216-E1224.	3.6	47
77	Mediation misgivings: ambiguous clinical and public health interpretations of natural direct and indirect effects. International Journal of Epidemiology, 2014, 43, 1656-1661.	1.9	69
78	Stillbirth Rates among <scp>H</scp> aitians in <scp>C</scp> anada. Paediatric and Perinatal Epidemiology, 2014, 28, 333-337.	1.7	6
79	The Parametric g-Formula for Time-to-event Data. Epidemiology, 2014, 25, 889-897.	2.7	127
80	Extreme Heat and Risk of Early Delivery Among Preterm and Term Pregnancies. Epidemiology, 2014, 25, 344-350.	2.7	81
81	Estimating the Effect of Cumulative Occupational Asbestos Exposure on Time to Lung Cancer Mortality. Epidemiology, 2014, 25, 246-254.	2.7	27
82	Stochastic Mediation Contrasts in Epidemiologic Research: Interpregnancy Interval and the Educational Disparity in Preterm Delivery. American Journal of Epidemiology, 2014, 180, 436-445.	3.4	26
83	Fetuses-at-risk, to avoid paradoxical associations at early gestational ages: extension to preterm infant mortality. International Journal of Epidemiology, 2014, 43, 1154-1162.	1.9	18
84	Constructing Inverse Probability Weights for Continuous Exposures. Epidemiology, 2014, 25, 292-299.	2.7	99
85	Semiparametric Adjusted Exposure-Response Curves. Epidemiology, 2014, 25, 919-922.	2.7	2
86	Assessing the component associations of the healthy worker survivor bias: occupational asbestos exposure and lung cancer mortality. Annals of Epidemiology, 2013, 23, 334-341.	1.9	20
87	Causal Inference in Occupational Epidemiology: Accounting for the Healthy Worker Effect by Using Structural Nested Models. American Journal of Epidemiology, 2013, 178, 1681-1686.	3.4	33
88	Analysis of Occupational Asbestos Exposure and Lung Cancer Mortality Using the G Formula. American Journal of Epidemiology, 2013, 177, 989-996.	3.4	49
89	Assessing the Relationship Between Hazard Mitigation Plan Quality and Rural Status in a Cohort of 57 Counties from 3 States in the Southeastern U.S Challenges, 2012, 3, 183-193.	1.7	16
90	Inverse Probability Weighting With Time-varying Confounding and Nonpositivity. Epidemiology, 2012, 23, 179.	2.7	0

#	Article	IF	CITATIONS
91	A Comparison of Methods to Estimate the Hazard Ratio Under Conditions of Time-varying Confounding and Nonpositivity. Epidemiology, 2011, 22, 718-723.	2.7	21
92	Mediation considerations: serum potassium and the racial disparity in diabetes risk. American Journal of Clinical Nutrition, 2011, 94, 614-616.	4.7	7
93	Altered mitochondrial regulation in quadriceps muscles of patients with COPD. Clinical Physiology and Functional Imaging, 2010, 31, no-no.	1.2	35
94	Associations between Area-Level Unemployment, Body Mass Index, and Risk Factors for Cardiovascular Disease in an Urban Area. International Journal of Environmental Research and Public Health, 2009, 6, 3082-3096.	2.6	23
95	Public Health and the Risk Factor: A History of an Uneven Medical Revolution: By William G. Rothstein. American Journal of Epidemiology, 2009, 169, 781-782.	3.4	0
96	The Feasibility of a Randomized Trial Using a Progressive Exercise Program in Patients with Severe Hip Osteoarthritis. Journal of Musculoskeletal Pain, 2008, 16, 309-317.	0.3	6