
Guiping Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3118728/publications.pdf Version: 2024-02-01

CUUDING 7HAO

#	Article	IF	CITATIONS
1	Genome-Wide Association Study Identifies Loci and Candidate Genes for Body Composition and Meat Quality Traits in Beijing-You Chickens. PLoS ONE, 2013, 8, e61172.	2.5	117
2	The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 2013, 14, 458.	2.8	95
3	FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. Journal of Lipid Research, 2012, 53, 909-917.	4.2	77
4	Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens. BMC Genomics, 2019, 20, 863.	2.8	61
5	Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chemistry, 2021, 359, 129930.	8.2	54
6	Epigenetic Modification of TLRs in Leukocytes Is Associated with Increased Susceptibility to Salmonella enteritidis in Chickens. PLoS ONE, 2012, 7, e33627.	2.5	51
7	Uncovering the embryonic development-related proteome and metabolome signatures in breast muscle and intramuscular fat of fast-and slow-growing chickens. BMC Genomics, 2017, 18, 816.	2.8	51
8	Identification of differentially expressed genes and pathways for intramuscular fat metabolism between breast and thigh tissues of chickens. BMC Genomics, 2018, 19, 55.	2.8	50
9	The regulation of IMF deposition in pectoralis major of fast- and slow- growing chickens at hatching. Journal of Animal Science and Biotechnology, 2017, 8, 77.	5.3	47
10	Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens. PLoS ONE, 2016, 11, e0159722.	2.5	40
11	Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics, 2018, 19, 838.	2.8	39
12	A new chicken 55K SNP genotyping array. BMC Genomics, 2019, 20, 410.	2.8	37
13	The Identification of Loci for Immune Traits in Chickens Using a Genome-Wide Association Study. PLoS ONE, 2015, 10, e0117269.	2.5	33
14	Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken. Genes, 2018, 9, 199.	2.4	30
15	Selection for growth rate and body size have altered the expression profiles of somatotropic axis genes in chickens. PLoS ONE, 2018, 13, e0195378.	2.5	30
16	Identification of loci and genes for growth related traits from a genome-wide association study in a slow- × fast-growing broiler chicken cross. Genes and Genomics, 2015, 37, 829-836.	1.4	29
17	Splenic microRNA Expression Profiles and Integration Analyses Involved in Host Responses to Salmonella enteritidis Infection in Chickens. Frontiers in Cellular and Infection Microbiology, 2017, 7, 377.	3.9	29
18	Folate supplementation modifies CCAAT/enhancer-binding protein \hat{I}_{\pm} methylation to mediate differentiation of preadipocytes in chickens. Poultry Science, 2014, 93, 2596-2603.	3.4	28

#	Article	IF	CITATIONS
19	Specific Microbial Taxa and Functional Capacity Contribute to Chicken Abdominal Fat Deposition. Frontiers in Microbiology, 2021, 12, 643025.	3.5	28
20	Up-regulation of the MyD88-dependent pathway of TLR signaling in spleen and caecum of young chickens infected with Salmonella serovar Pullorum. Veterinary Microbiology, 2010, 143, 346-351.	1.9	27
21	Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics, 2022, 23, 308.	2.8	27
22	RNA-Seq Analysis Reveals Hub Genes Involved in Chicken Intramuscular Fat and Abdominal Fat Deposition During Development. Frontiers in Genetics, 2020, 11, 1009.	2.3	25
23	SPOP promotes ubiquitination and degradation of MyD88 to suppress the innate immune response. PLoS Pathogens, 2020, 16, e1008188.	4.7	25
24	Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells. Journal of Proteomics, 2016, 136, 48-54.	2.4	24
25	Effects of inulin supplementation on intestinal barrier function and immunity in specific pathogen-free chickens with Salmonella infection. Journal of Animal Science, 2020, 98, .	0.5	24
26	Identification of diverse cell populations in skeletal muscles and biomarkers for intramuscular fat of chicken by single-cell RNA sequencing. BMC Genomics, 2020, 21, 752.	2.8	24
27	Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens. Animals, 2020, 10, 4.	2.3	23
28	Genome-Wide Linkage Analysis and Association Study Identifies Loci for Polydactyly in Chickens. G3: Genes, Genomes, Genetics, 2014, 4, 1167-1172.	1.8	22
29	Genome-Wide Linkage Analysis Identifies Loci for Physical Appearance Traits in Chickens. G3: Genes, Genomes, Genetics, 2015, 5, 2037-2041.	1.8	21
30	New insights into the associations among feed efficiency, metabolizable efficiency traits and related QTL regions in broiler chickens. Journal of Animal Science and Biotechnology, 2020, 11, 65.	5.3	21
31	Messenger RNA Sequencing and Pathway Analysis Provide Novel Insights Into the Susceptibility to Salmonella enteritidis Infection in Chickens. Frontiers in Genetics, 2018, 9, 256.	2.3	20
32	Decreased testosterone levels after caponization leads to abdominal fat deposition in chickens. BMC Genomics, 2018, 19, 344.	2.8	20
33	The effect of Epigallocatechinâ€3â€gallate on small intestinal morphology, antioxidant capacity and antiâ€inflammatory effect in heatâ€stressed broilers. Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1030-1038.	2.2	20
34	Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken. Poultry Science, 2016, 95, 1387-1395.	3.4	19
35	Relevance of the intestinal health-related pathways to broiler residual feed intake revealed by duodenal transcriptome profiling. Poultry Science, 2019, 98, 1102-1110.	3.4	19
36	High-salt intake negatively regulates fat deposition in mouse. Scientific Reports, 2017, 7, 2053.	3.3	18

#	Article	IF	CITATIONS
37	Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens. Poultry Science, 2017, 96, 2040-2048.	3.4	17
38	Follicle-stimulating hormone promotes the transformation of cholesterol to estrogen in mouse adipose tissue. Biochemical and Biophysical Research Communications, 2018, 495, 2331-2337.	2.1	17
39	Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genetics Selection Evolution, 2021, 53, 13.	3.0	17
40	Interactomic landscape of PA-X-chicken protein complexes of H5N1 influenza A virus. Journal of Proteomics, 2016, 148, 20-25.	2.4	16
41	Exploring Genomic Variants Related to Residual Feed Intake in Local and Commercial Chickens by Whole Genomic Resequencing. Genes, 2018, 9, 57.	2.4	16
42	The effects of inulin on the mucosal morphology and immune status of specific pathogen-free chickens. Poultry Science, 2018, 97, 3938-3946.	3.4	16
43	Chicken gga-miR-1306-5p targets Tollip and plays an important role in host response against Salmonella enteritidis infection. Journal of Animal Science and Biotechnology, 2019, 10, 59.	5.3	16
44	Dietary Inulin Supplementation Modulates Short-Chain Fatty Acid Levels and Cecum Microbiota Composition and Function in Chickens Infected With Salmonella. Frontiers in Microbiology, 2020, 11, 584380.	3.5	16
45	Genome-Wide Association Study of Muscle Glycogen in Jingxing Yellow Chicken. Genes, 2020, 11, 497.	2.4	16
46	Association of Heterophil/Lymphocyte Ratio with Intestinal Barrier Function and Immune Response to Salmonella enteritidis Infection in Chicken. Animals, 2021, 11, 3498.	2.3	15
47	Host cell interactome of PB1 N40 protein of H5N1 influenza A virus in chicken cells. Journal of Proteomics, 2019, 197, 34-41.	2.4	14
48	Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics, 2021, 22, 8.	2.8	14
49	Integrative analysis of transcriptomics and metabolomics to reveal the melanogenesis pathway of muscle and related meat characters in Wuliangshan black-boned chickens. BMC Genomics, 2022, 23, 173.	2.8	14
50	Host Interaction Analysis of PA-N155 and PA-N182 in Chicken Cells Reveals an Essential Role of UBA52 for Replication of H5N1 Avian Influenza Virus. Frontiers in Microbiology, 2018, 9, 936.	3.5	13
51	Identification of the molecular regulation of differences in lipid deposition in dedifferentiated preadipocytes from different chicken tissues. BMC Genomics, 2021, 22, 232.	2.8	13
52	Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Frontiers in Immunology, 2022, 13, 816689.	4.8	13
53	Transcriptome Analysis of the Cecal Tonsil of Jingxing Yellow Chickens Revealed the Mechanism of Differential Resistance to Salmonella. Genes, 2019, 10, 979.	2.4	12
54	Genome-Wide Detection of Key Genes and Epigenetic Markers for Chicken Fatty Liver. International Journal of Molecular Sciences, 2020, 21, 1800.	4.1	11

#	Article	IF	CITATIONS
55	Serum Creatine Kinase as a Biomarker to Predict Wooden Breast in vivo for Chicken Breeding. Frontiers in Physiology, 2021, 12, 711711.	2.8	11
56	Large-Scale Whole Genome Sequencing Study Reveals Genetic Architecture and Key Variants for Breast Muscle Weight in Native Chickens. Genes, 2022, 13, 3.	2.4	11
57	A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens. Genetica, 2014, 142, 441-450.	1.1	10
58	A selected population study reveals the biochemical mechanism of intramuscular fat deposition in chicken meat. Journal of Animal Science and Biotechnology, 2022, 13, 54.	5.3	10
59	Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization. Genetics and Molecular Biology, 2010, 33, 44-50.	1.3	9
60	Genome-Wide Association Study of H/L Traits in Chicken. Animals, 2019, 9, 260.	2.3	9
61	Time Course Transcriptomic Study Reveals the Gene Regulation During Liver Development and the Correlation With Abdominal Fat Weight in Chicken. Frontiers in Genetics, 2021, 12, 723519.	2.3	9
62	Liver Transcriptome Response to Heat Stress in Beijing You Chickens and Guang Ming Broilers. Genes, 2022, 13, 416.	2.4	9
63	Assessment the effect of genomic selection and detection of selective signature in broilers. Poultry Science, 2022, 101, 101856.	3.4	9
64	Inhibition of cholesterol biosynthesis promotes the production of 1-octen-3-ol through mevalonic acid. Food Research International, 2022, 158, 111392.	6.2	9
65	Genome-Wide Association Study and Pathway Analysis for Heterophil/Lymphocyte (H/L) Ratio in Chicken. Genes, 2020, 11, 1005.	2.4	8
66	Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genetics Selection Evolution, 2021, 53, 66.	3.0	8
67	Changes of host DNA methylation in domestic chickens infected with Salmonella enterica. Journal of Genetics, 2017, 96, 545-550.	0.7	7
68	Identification of Major Loci and Candidate Genes for Meat Production-Related Traits in Broilers. Frontiers in Genetics, 2021, 12, 645107.	2.3	7
69	Associations of Polymorphisms in Four Candidate Genes with Carcass and/or Meat-Quality Traits in Two Meat-Type Chicken Lines. Animal Biotechnology, 2013, 24, 53-65.	1.5	6
70	Genome-Wide Linkage Analysis Identifies Loci for Testicle and Ovary Traits in Chickens. Animal Biotechnology, 2018, 29, 309-315.	1.5	6
71	Identification of Differentially Expressed Genes and Pathways for Abdominal Fat Deposition in Ovariectomized and Sham-Operated Chickens. Genes, 2019, 10, 155.	2.4	6
72	Comparison of the Efficiency of BLUP and GBLUP in Genomic Prediction of Immune Traits in Chickens. Animals, 2020, 10, 419.	2.3	6

#	Article	IF	CITATIONS
73	Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella enteritidis Infection in Chicken. Pathogens, 2022, 11, 72.	2.8	6
74	Paternal Dietary Methionine Supplementation Improves Carcass Traits and Meat Quality of Chicken Progeny. Animals, 2021, 11, 325.	2.3	5
75	Viral–Host Interactome Analysis Reveals Chicken STAU2 Interacts With Non-structural Protein 1 and Promotes the Replication of H5N1 Avian Influenza Virus. Frontiers in Immunology, 2021, 12, 590679.	4.8	5
76	Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes. Genes, 2022, 13, 307.	2.4	5
77	Transcriptomic Analysis of the Spleen of Different Chicken Breeds Revealed the Differential Resistance of Salmonella Typhimurium. Genes, 2022, 13, 811.	2.4	5
78	Genetic Mutation Analysis of High and Low IgY Chickens by Capture Sequencing. Animals, 2019, 9, 272.	2.3	3
79	Maternal dietary methionine supplementation influences egg production and the growth performance and meat quality of the offspring. Poultry Science, 2020, 99, 3550-3556.	3.4	3
80	FOSL2 Is Involved in the Regulation of Glycogen Content in Chicken Breast Muscle Tissue. Frontiers in Physiology, 2021, 12, 682441.	2.8	3
81	Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens. Asian-Australasian Journal of Animal Sciences, 2016, 29, 479-486.	2.4	3
82	The SLC27A1 Gene and Its Enriched PPAR Pathway Are Involved in the Regulation of Flavor Compound Hexanal Content in Chinese Native Chickens. Genes, 2022, 13, 192.	2.4	3
83	Expression profiles of novel genes and microRNAs involved in lipid deposition in chicken's adipocyte. Italian Journal of Animal Science, 2018, 17, 593-598.	1.9	2
84	Association of SPOP Expression with the Immune Response to Salmonella Infection in Chickens. Animals, 2020, 10, 307.	2.3	2
85	Differential mRNA and miRNA Profiles Reveal the Potential Roles of Genes and miRNAs Involved in LPS Infection in Chicken Macrophages. Genes, 2021, 12, 760.	2.4	2
86	Comparison of genomic prediction methods for residual feed intake in broilers. Animal Genetics, 2022, 53, 466-469.	1.7	2
87	Dual RNA-Seq of H5N1 Avian Influenza Virus and Host Cell Transcriptomes Reveals Novel Insights Into Host-Pathogen Cross Talk. Frontiers in Microbiology, 2022, 13, 828277.	3.5	2
88	Association of polymorphisms in adipocyte fatty acid binding protein gene with fat-related traits in chicken. Frontiers of Agriculture in China, 2008, 2, 474-479.	0.2	1
89	A Comparison of Different Tissues Identifies the Main Precursors of Volatile Substances in Chicken Meat. Frontiers in Physiology, 0, 13, .	2.8	1