Zhiqi Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3116530/publications.pdf

Version: 2024-02-01

117625 102487 23,430 67 34 66 h-index citations g-index papers 68 68 68 17099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	5.1	8,344
2	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	5.1	6,722
3	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A20.	5.1	1,233
4	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A1.	5.1	804
5	The Simons Observatory: science goals and forecasts. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 056-056.	5.4	741
6	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A1.	5.1	738
7	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A14.	5.1	568
8	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	5.1	558
9	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A17.	5.1	440
10	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A108.	5.1	375
11	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2016, 596, A107.	5.1	359
12	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A16.	5.1	338
13	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	5.1	319
14	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A4.	5.1	218
15	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 607, A95.	5.1	131
16	The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 031-031.	5.4	120
17	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A11.	5.1	118
18	Non-Gaussian Curvature Spikes from Chaotic Billiards in Inflation Preheating. Physical Review Letters, 2009, 103, 071301.	7.8	94

#	Article	IF	CITATIONS
19	Cosmological fluctuations from infrared cascading during inflation. Physical Review D, 2009, 80, .	4.7	85
20	Particle production during inflation: Observational constraints and signatures. Physical Review D, 2009, 80, .	4.7	82
21	The future of primordial features with large-scale structure surveys. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 014-014.	5.4	59
22	Art of lattice and gravity waves from preheating. Physical Review D, 2011, 83, .	4.7	55
23	<i>Planck</i> ii>intermediate results. Astronomy and Astrophysics, 2016, 586, A141.	5.1	55
24	Cosmic Microwave Background Bispectrum from Recombination. Physical Review Letters, 2013, 110, 101303.	7.8	48
25	<i>Planck</i> iiintermediate results. Astronomy and Astrophysics, 2016, 596, A105.	5.1	47
26	Constraining inflation with future galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 005-005.	5.4	46
27	<i>Planck </i> intermediate results. Astronomy and Astrophysics, 2017, 599, A51.	5.1	46
28	New High-quality Strong Lens Candidates with Deep Learning in the Kilo-Degree Survey. Astrophysical Journal, 2020, 899, 30.	4.5	46
29	Comparison of Einstein-Boltzmann solvers for testing general relativity. Physical Review D, 2018, 97, .	4.7	44
30	Can non-standard recombination resolve the Hubble tension? Science China: Physics, Mechanics and Astronomy, 2020, 63, 1 .	5.1	44
31	Weakening gravity on redshift-survey scales with kinetic matter mixing. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 014-014.	5.4	41
32	A New Limit on CMB Circular Polarization from SPIDER. Astrophysical Journal, 2017, 844, 151.	4.5	40
33	Preheating after modular inflation. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 021-021.	5.4	39
34	Cosmological constraints on decaying dark matter. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 005-005.	5.4	38
35	SPIDER: CMB Polarimetry from the Edge of Space. Journal of Low Temperature Physics, 2018, 193, 1112-1121.	1.4	35
36	Catastrophic Consequences of Kicking the Chameleon. Physical Review Letters, 2013, 110, 171101.	7.8	32

#	Article	IF	Citations
37	Chameleons in the early Universe: Kicks, rebounds, and particle production. Physical Review D, 2014, 89 , .	4.7	28
38	The H ₀ Tension in Non-flat QCDM Cosmology. Astrophysical Journal, 2018, 868, 20.	4.5	23
39	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 617, A48.	5.1	22
40	High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint. Astrophysical Journal, 2021, 923, 16.	4.5	20
41	PARAMETERIZING AND MEASURING DARK ENERGY TRAJECTORIES FROM LATE INFLATONS. Astrophysical Journal, 2011, 726, 64.	4.5	19
42	Observational effects of a running Planck mass. Physical Review D, 2016, 93, .	4.7	19
43	Search for Lensing Signatures from the Latest Fast Radio Burst Observations and Constraints on the Abundance of Primordial Black Holes. Astrophysical Journal, 2022, 928, 124.	4.5	19
44	Full cosmic microwave background temperature bispectrum from single-field inflation. Physical Review D, 2014, 89, .	4.7	18
45	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2018, 619, A94.	5.1	18
46	Supernova Magnitude Evolution and PAge Approximation. Astrophysical Journal Letters, 2020, 892, L28.	8.3	16
47	A cosmology forecast toolkit â€" CosmoLib. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 012-012.	5.4	15
48	Reaffirming the Cosmic Acceleration without Supernovae and the Cosmic Microwave Background. Astrophysical Journal, 2020, 905, 53.	4.5	14
49	Marginalized Fisher forecast for Horndeski dark energy models. International Journal of Modern Physics D, 2017, 26, 1750070.	2.1	12
50	Band-limited Features in the Primordial Power Spectrum Do Not Resolve the Hubble Tension. Astrophysical Journal, 2020, 897, 166.	4.5	10
51	280 GHz Focal Plane Unit Design and Characterization for the Spider-2 Suborbital Polarimeter. Journal of Low Temperature Physics, 2018, 193, 1075-1084.	1.4	9
52	Reconciling low and high redshift GRB luminosity correlations. Physical Review D, 2021, 103, .	4.7	8
53	The S8 tension in light of updated redshift-space distortion data and PAge approximation. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	5.1	8
54	Constraints on the abundance of primordial black holes with different mass distributions from lensing of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1141-1152.	4.4	8

#	Article	IF	CITATIONS
55	Flatness without CMB: The Entanglement of Spatial Curvature and Dark Energy Equation of State. Astrophysical Journal, 2019, 877, 107.	4.5	7
56	Constraints on the abundance of supermassive primordial black holes from lensing of compact radio sources. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3627-3633.	4.4	7
57	Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey. I. Evidence for Thermal Energy Anisotropy Using Oriented Stacking. Astrophysical Journal, 2022, 933, 134.	4.5	6
58	Revisiting the cosmological bias due to local gravitational redshifts. Physical Review D, 2015, 91, .	4.7	4
59	<i>Planck</i> intermediate results. Astronomy and Astrophysics, 2020, 644, A99.	5.1	4
60	Statistics of thawing <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -essence dark energy models. Physical Review D, 2021, 104, .	4.7	4
61	High-redshift minihaloes from modulated preheating. Physical Review D, 2019, 99, .	4.7	2
62	A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra. Astrophysical Journal, 2022, 928, 109.	4.5	2
63	Thawing k-essence dark energy in the PAge space. Communications in Theoretical Physics, 2022, 74, 095404.	2.5	2
64	Anti-evaporation and evaporation of an n -dimensional Reissner-Nordstr $\tilde{A}\P m$ black hole. Physical Review D, 2019, 99, .	4.7	1
65	Cosmological constraints from the density gradient weighted correlation function. Monthly Notices of the Royal Astronomical Society, 2022, 513, 595-603.	4.4	1
66	In-Flight Gain Monitoring of SPIDER's Transition-Edge Sensor Arrays. Journal of Low Temperature Physics, 2022, 209, 649-657.	1.4	1
67	Forecasting cosmological bias due to local gravitational redshift. International Journal of Modern Physics D, 2019, 28, 1950150.	2.1	0