
Yuehua Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3115952/publications.pdf Version: 2024-02-01

<u>ΥΠΕΗΠΑ ΓΙ</u>

#	Article	IF	CITATIONS
1	Impact of Selective Renal Afferent Denervation on Oxidative Stress and Vascular Remodeling in Spontaneously Hypertensive Rats. Antioxidants, 2022, 11, 1003.	5.1	10
2	HSPA12A Stimulates p38/ERK-AP-1 Signaling to Promote Angiogenesis and Is Required for Functional Recovery Postmyocardial Infarction. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	4.0	3
3	Inhibition of miR-135a-5p attenuates vascular smooth muscle cell proliferation and vascular remodeling in hypertensive rats. Acta Pharmacologica Sinica, 2021, 42, 1798-1807.	6.1	19
4	Dysregulation of the Excitatory Renal Reflex in the Sympathetic Activation of Spontaneously Hypertensive Rat. Frontiers in Physiology, 2021, 12, 673950.	2.8	4
5	Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Experimental Eye Research, 2021, 207, 108568.	2.6	5
6	miR-31-5p Promotes Oxidative Stress and Vascular Smooth Muscle Cell Migration in Spontaneously Hypertensive Rats via Inhibiting FNDC5 Expression. Biomedicines, 2021, 9, 1009.	3.2	13
7	Salusin-β in Intermediate Dorsal Motor Nucleus of the Vagus Regulates Sympathetic-Parasympathetic Balance and Blood Pressure. Biomedicines, 2021, 9, 1118.	3.2	4
8	Extracellular vesicle-mediated miR135a-5p transfer in hypertensive rat contributes to vascular smooth muscle cell proliferation via targeting FNDC5. Vascular Pharmacology, 2021, 140, 106864.	2.1	15
9	RND3 attenuates oxidative stress and vascular remodeling in spontaneously hypertensive rat via inhibiting ROCK1 signaling. Redox Biology, 2021, 48, 102204.	9.0	21
10	Chemical Stimulation of Renal Tissue Induces Sympathetic Activation and a Pressor Response via the Paraventricular Nucleus in Rats. Neuroscience Bulletin, 2020, 36, 143-152.	2.9	19
11	MiR155â€5p in adventitial fibroblastsâ€derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensinâ€converting enzyme expression. Journal of Extracellular Vesicles, 2020, 9, 1698795.	12.2	89
12	HSPA12A unstabilizes CD147 to inhibit lactate export and migration in human renal cell carcinoma. Theranostics, 2020, 10, 8573-8590.	10.0	19
13	Interleukin-1β in hypothalamic paraventricular nucleus mediates excitatory renal reflex. Pflugers Archiv European Journal of Physiology, 2020, 472, 1577-1586.	2.8	8
14	MiR155-5p Inhibits Cell Migration and Oxidative Stress in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats. Antioxidants, 2020, 9, 204.	5.1	22
15	Angiotensin Type 1 Receptors and Superoxide Anion Production in Hypothalamic Paraventricular Nucleus Contribute to Capsaicin-Induced Excitatory Renal Reflex and Sympathetic Activation. Neuroscience Bulletin, 2020, 36, 463-474.	2.9	14
16	Triad3A attenuates pathological cardiac hypertrophy involving the augmentation of ubiquitination-mediated degradation of TLR4 and TLR9. Basic Research in Cardiology, 2020, 115, 19.	5.9	39
17	HSPA12A attenuates lipopolysaccharide-induced liver injury through inhibiting caspase-11-mediated hepatocyte pyroptosis via PGC-1α-dependent acyloxyacyl hydrolase expression. Cell Death and Differentiation, 2020, 27, 2651-2667.	11.2	45
18	FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	30

Yueнua Li

#	Article	IF	CITATIONS
19	TIR/BB-loop mimetic AS-1 protects vascular endothelial cells from injury induced by hypoxia/reoxygenation. Journal of Biomedical Research, 2020, 34, 343.	1.6	Ο
20	Cardiomyocyte-specific deficiency of HSPB1 worsens cardiac dysfunction by activating NFκB-mediated leucocyte recruitment after myocardial infarction. Cardiovascular Research, 2019, 115, 154-167.	3.8	38
21	FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFήB-mediated NLRP3 upregulation. Vascular Pharmacology, 2019, 121, 106579.	2.1	29
22	Peli1 induction impairs cardiac microvascular endothelium through Hsp90 dissociation from IRE1α. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2606-2617.	3.8	35
23	Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFήB-mediated NLRP3 expression in spontaneously hypertensive rats. Journal of Nutritional Biochemistry, 2019, 72, 108212.	4.2	29
24	BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-9.	4.0	21
25	Exosomes derived from mangiferin‴stimulated perivascular adipose tissue ameliorate endothelial dysfunction. Molecular Medicine Reports, 2019, 19, 4797-4805.	2.4	7
26	HSPA12A is required for adipocyte differentiation and diet-induced obesity through a positive feedback regulation with PPARÎ ³ . Cell Death and Differentiation, 2019, 26, 2253-2267.	11.2	28
27	Prostaglandin E2/EP2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia, 2019, 62, 335-348.	6.3	30
28	HSPA12A Is a Novel Player in Nonalcoholic Steatohepatitis via Promoting Nuclear PKM2-Mediated M1 Macrophage Polarization. Diabetes, 2019, 68, 361-376.	0.6	49
29	FNDC5 attenuates adipose tissue inflammation and insulin resistance via AMPK-mediated macrophage polarization in obesity. Metabolism: Clinical and Experimental, 2018, 83, 31-41.	3.4	105
30	<scp>HSPA</scp> 12B promotes functional recovery after ischaemic stroke through an <scp>eNOS</scp> â€dependent mechanism. Journal of Cellular and Molecular Medicine, 2018, 22, 2252-2262.	3.6	7
31	Fibronectin type III domain containing 5 attenuates NLRP3 inflammasome activation and phenotypic transformation of adventitial fibroblasts in spontaneously hypertensive rats. Journal of Hypertension, 2018, 36, 1104-1114.	0.5	38
32	Heat shock protein A12A encodes a novel prosurvival pathway during ischaemic stroke. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1862-1872.	3.8	18
33	Exosome-Mediated Transfer of ACE (Angiotensin-Converting Enzyme) From Adventitial Fibroblasts of Spontaneously Hypertensive Rats Promotes Vascular Smooth Muscle Cell Migration. Hypertension, 2018, 72, 881-888.	2.7	56
34	Fibronectin Type III Domain-Containing 5 Attenuates Liver Fibrosis Via Inhibition of Hepatic Stellate Cell Activation. Cellular Physiology and Biochemistry, 2018, 48, 227-236.	1.6	13
35	SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia–reperfusion injury. Basic Research in Cardiology, 2017, 112, 22.	5.9	35
36	Silencing salusin-β attenuates cardiovascular remodeling and hypertension in spontaneously hypertensive rats. Scientific Reports, 2017, 7, 43259.	3.3	24

Yueнua Li

#	Article	IF	CITATIONS
37	Salusin-β contributes to oxidative stress and inflammation in diabetic cardiomyopathy. Cell Death and Disease, 2017, 8, e2690-e2690.	6.3	67
38	The histone H3K9 methyltransferase SUV39H links SIRT1 repression to myocardial infarction. Nature Communications, 2017, 8, 14941.	12.8	67
39	TIR/BB-loop mimetic AS-1 attenuates cardiac ischemia/reperfusion injury via a caveolae and caveolin-3-dependent mechanism. Scientific Reports, 2017, 7, 44638.	3.3	4
40	The TIR/BBâ€loop mimetic ASâ€1 prevents nonâ€alcoholic steatohepatitis and hepatic insulin resistance by inhibiting NLRP3â€ASC inflammasome activation. British Journal of Pharmacology, 2017, 174, 1841-1856.	5.4	17
41	NLRP3 inflammasome activation contributes to VSMC phenotypic transformation and proliferation in hypertension. Cell Death and Disease, 2017, 8, e3074-e3074.	6.3	179
42	BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death and Disease, 2017, 8, e3156-e3156.	6.3	33
43	NLRP3 Gene Deletion Attenuates Angiotensin II-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Vascular Remodeling. Cellular Physiology and Biochemistry, 2017, 44, 2269-2280.	1.6	88
44	HSP27 Alleviates Cardiac Aging in Mice via a Mechanism Involving Antioxidation and Mitophagy Activation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	4.0	33
45	FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes, 2016, 65, 3262-3275.	0.6	114
46	β-aminoisobutyric acid attenuates hepatic endoplasmic reticulum stress and glucose/lipid metabolic disturbance in mice with type 2 diabetes. Scientific Reports, 2016, 6, 21924.	3.3	73
47	Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Scientific Reports, 2016, 6, 34374.	3.3	25
48	HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism. Scientific Reports, 2016, 6, 33636.	3.3	49
49	Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Scientific Reports, 2016, 6, 23596.	3.3	40
50	The TIR/BB-loop mimetic AS-1 attenuates mechanical stress-induced cardiac fibroblast activation and paracrine secretion via modulation of large tumor suppressor kinase 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1191-1202.	3.8	9
51	Relaxin in paraventricular nucleus contributes to sympathetic overdrive and hypertension via PI3K-Akt pathway. Neuropharmacology, 2016, 103, 247-256.	4.1	36
52	Salusin-β Promotes Vascular Smooth Muscle Cell Migration and Intimal Hyperplasia After Vascular Injury <i>via</i> ROS/NFκB/MMP-9 Pathway. Antioxidants and Redox Signaling, 2016, 24, 1045-1057.	5.4	94
53	Class III <scp>PI</scp> 3Kâ€mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. Journal of Cellular and Molecular Medicine, 2015, 19, 1710-1719.	3.6	32
54	lrisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in typeÂ2 diabetic mice and hepatocytes. Clinical Science, 2015, 129, 839-850.	4.3	263

Yueнua Li

#	Article	IF	CITATIONS
55	GABA in Paraventricular Nucleus Regulates Adipose Afferent Reflex in Rats. PLoS ONE, 2015, 10, e0136983.	2.5	12
56	HSPA12B attenuates acute lung injury during endotoxemia in mice. International Immunopharmacology, 2015, 29, 599-606.	3.8	7
57	Salusin-β contributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1709-1718.	3.8	63
58	FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1867-1875.	3.8	168
59	Histone Methyltransferase SET1 Mediates Angiotensin II–Induced Endothelin-1 Transcription and Cardiac Hypertrophy in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1207-1217.	2.4	47
60	Pellino1-mediated TGF-β1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. Journal of Molecular and Cellular Cardiology, 2015, 79, 145-156.	1.9	53
61	HSPA12B: a novel facilitator of lung tumor growth. Oncotarget, 2015, 6, 9924-9936.	1.8	15
62	Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovascular Research, 2014, 102, 46-55.	3.8	27
63	α-Lipoic acid protected cardiomyoblasts from the injury induced by sodium nitroprusside through ROS-mediated Akt/Gsk-3β activation. Toxicology in Vitro, 2014, 28, 1461-1473.	2.4	8
64	The TIR/BB-loop mimetic AS-1 prevents cardiac hypertrophy by inhibiting IL-1R-mediated MyD88-dependent signaling. Basic Research in Cardiology, 2011, 106, 787-799.	5.9	28
65	17β-estradiol inhibits angiotensin II-induced cardiac myofibroblast differentiation. European Journal of Pharmacology, 2009, 616, 155-159.	3.5	33
66	Blockade of MyD88 attenuates cardiac hypertrophy and decreases cardiac myocyte apoptosis in pressure overload-induced cardiac hypertrophy in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H985-H994.	3.2	76
67	Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovascular Research, 2005, 68, 224-234.	3.8	133
68	NF-κB activation is required for the development of cardiac hypertrophy in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1712-H1720.	3.2	154