
Rusinov Peter O

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3115418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intellectualization of Surface Layers, Working under Cyclic Loading and Reversing Friction. Applied Mechanics and Materials, 2015, 798, 440-446.	0.2	14
2	Formation of composite layers TiNiZr-cBN-Co, working in conditions of cyclic loading and reverse friction. Procedia Structural Integrity, 2016, 2, 1506-1513.	0.8	13
3	Formation of nanostructured surface layers by plasma spraying the mechanoactivated powders of alloys with shape memory effect. Nanotechnologies in Russia, 2010, 5, 352-363.	0.7	11
4	Structure and properties of the CoCuTiZrHf coating obtained by the HVOF method. Surface Innovations, 2021, 9, 120-126.	2.3	9
5	Structural behavior and mechanical properties of high-entropy coatings synthesized by HVOF. Surface Innovations, 2021, 9, 127-138.	2.3	8
6	Mechanical and Tribological Properties of the Composition "Steel - Nanostructured Surface Layer of a Material with Shape Memory Effect Based TiNiCu― Applied Mechanics and Materials, 0, 592-594, 1325-1330.	0.2	7
7	Mechanical and tribological properties of "substrate–material―multifunctional composite with shape memory effect. Inorganic Materials, 2016, 52, 1489-1497.	0.8	7
8	Influence of Superficial Modification of Steels by Materials with Effect of Memory of the Form on Wear-Fatigue Characteristics at Frictional-Cyclic Loading. Advanced Materials Research, 0, 915-916, 509-514.	0.3	6
9	Failure analysis of screw propellers and increase of fail safety by surface modification with multicomponent materials with shape memory effect. Procedia Structural Integrity, 2016, 2, 1497-1505.	0.8	6
10	Formation of surface layers from highly entropic materials with shape memory effect. AIP Conference Proceedings, 2019, , .	0.4	6
11	Hardware-Technological Features of Layered Surface Composition Made of Shape Memory Materials in a Single Vacuum Cycle. Key Engineering Materials, 0, 723, 497-502.	0.4	5
12	Structural-Mechanical Control of Bypass Reactivity in LISB for Space Application Using Alloys with Shape Memory Alloys. Materials Science Forum, 2013, 738-739, 601-606.	0.3	4
13	Formation of Nanostructure Surface Layers from Materials with Shape Memory Effect TiNiCu in Conditions. Materials Science Forum, 2013, 738-739, 512-517.	0.3	4
14	Improving product performance by forming surface compositions from shape memory effect materials with a gradient of properties and phase transformation temperatures. Material Design and Processing Communications, 2020, 2, e132.	0.9	4
15	Functionally oriented composite layered materials with martensitic transformations. Surface Innovations, 0, , 1-12.	2.3	4
16	Ways to increase the fail-safety of screw propellers with composite surface layers made of materials with the shape memory effect. AIP Conference Proceedings, 2016, , .	0.4	3
17	Corrosion-Mechanical Properties of Multifunctional Composition "Steel-Material with a Shape Memory Effect". Materials Science Forum, 2016, 844, 7-12.	0.3	3
18	Formation of Composite Surface Layers TiNiTa + cBN-Co-NiAl-Y Considering their Properties. Materials Science Forum, 2017, 886, 8-12.	0.3	3

RUSINOV PETER O

#	Article	IF	CITATIONS
19	Quantification of hereditary regularities of surface layer formation and transformation made of multicomponent shape memory materials in a high-energy impact. Materials Today: Proceedings, 2017, 4, 4652-4657.	1.8	3
20	Influence of Particle Size Distribution, Energy Condition and Reactivity of the Deposited Material on Nanopatterning of Surface Layers Made of Shape Memory Materials. Key Engineering Materials, 2017, 730, 8-14.	0.4	3
21	Physicomechanical and design characteristics of surface high-entropy alloys. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2021, 235, 1635-1644.	1.1	3
22	Study of the structure and properties of a high-entropy ceramic composite material. Surface Innovations, 2022, 10, 217-226.	2.3	3
23	Surface Modification of Parts Material Shape Memory TiNiCo with a View to Providing a Functional and Mechanical Property as a Factor in Resource. Journal of Surface Engineered Materials and Advanced Technology, 2014, 04, 348-358.	0.2	3
24	Superficial Modifying by Materials with SME in Engineering Appendices. Materials Science Forum, 2013, 738-739, 595-600.	0.3	2
25	The Formation of Nanostructured Surface Layers of a Material with Shape Memory Effect of the TiNi Deposition Melt of the Fusible Metal at a Temperature Gradient. Applied Mechanics and Materials, 2014, 621, 7-12.	0.2	2
26	Investigation of the structure and properties of nanoscale TiNiNb compositions obtained by high-energy exposure. MATEC Web of Conferences, 2015, 33, 03001.	0.2	2
27	Analysis of the Efficiency of Functionally Oriented Composite Coatings Made of Materials with Thermoelastic Martensitic Transformations. Russian Metallurgy (Metally), 2021, 2021, 1224-1232.	0.5	2
28	The effect of surface coating by shape memory alloys on mechanical properties of steel. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1550-1553.	3.4	2
29	Formation and thermomechanical behaviour of composite surface layer containing shape memory materials during friction-cyclic loading. Tribology - Materials, Surfaces and Interfaces, 2017, 11, 7-13.	1.4	1
30	Perspectives of composition "Base – material with SME - ceramic material―for the formation of multipurpose surface layers on engineering products. Materials Today: Proceedings, 2017, 4, 4658-4663.	1.8	1
31	Effect of Mechanical Activation on the Structural Parameters of Ceramic Powders cBN-Co, hBN-Co. Key Engineering Materials, 2017, 730, 333-338.	0.4	1
32	Structure and functional properties of TiNiZr surface layers obtained by high-velocity oxygen fuel spraying. Journal of Physics: Conference Series, 2017, 857, 012035.	0.4	1
33	Improving the Longevity of the Propellers by the TiNiCo-B4C-Co Intelligent Surface Compositions Operating at Low Temperatures. Materials Science Forum, 0, 911, 39-43.	0.3	1
34	Evaluation of Cyclic Durability in Surfacemodified Layers with TiNiZr Thermoelastic Phase Transformations. MATEC Web of Conferences, 2018, 142, 03005.	0.2	1
35	Functionally oriented high-temperature composite materials. Surface Innovations, 0, , 1-11.	2.3	1
36	Structural and technological formation of surface nanostructured Ti-Ni-Mo layers by high-speed gas-flame spraying. MATEC Web of Conferences, 2015, 33, 03002.	0.2	0

RUSINOV PETER O

#	Article	IF	CITATIONS
37	Formation of the Surface Layers of a Material with Shape-Memory-Based TiNiCo Diffusion Metallization. Materials Science Forum, 0, 818, 3-6.	0.3	0
38	Effect of Hafnium on the Structural and Mechanical Properties of the Surface Layers on the Basis of TiNi. Materials Science Forum, 0, 863, 8-13.	0.3	0
39	Research on the structure and properties of TiNiHfCu – hBN-Co composite materials. AlP Conference Proceedings, 2016, , .	0.4	0
40	Investigation of mechanical characteristics of composite surface layers using materials with thermoelastic properties. AIP Conference Proceedings, 2017, , .	0.4	0
41	Deformation Behavior of the Surface Composition of Heat-Sensitive Materials with Shape Memory in the Operating Conditions. Solid State Phenomena, 2017, 263, 103-107.	0.3	0
42	Development of Parameters Optimization Technology for Obtaining Composite Materials and Coatings with Shape Memory Effect. Materials Science Forum, 0, 911, 34-38.	0.3	0
43	Deformation behavior of a surface composition of materials with shape memory effect in the conditions of multi-factor impacts. Materials Today: Proceedings, 2021, 38, 1908-1914.	1.8	0
44	Features of Obtaining Multicomponent Magnetron Targets for the Formation of Non-Porous Transformation-Hardenable Coatings of a Given Composition. Materials Science Forum, 0, 1037, 503-508.	0.3	0
45	Influence of Mechanical Activation and Mechanical Alloying on the Structure, Phase State of the Fe-Ni-Co-Al-Nb Powder Composition and on High-Entropy Coatings Based on it. Materials Science Forum, 0, 1037, 494-502.	0.3	0
46	Investigation of the structure and properties of high-entropy alloy Zr-Nb-Ti-Ta-Hf surface-modified by high velocity oxygen fuel spraying. AIP Conference Proceedings, 2020, , .	0.4	0
47	Evaluation of Cyclic Durability in Surfacemodified Layers with TiNiZr Thermoelastic Phase Transformations. MATEC Web of Conferences, 2018, 142, 03005.	0.2	0
48	Formation of High-Entropy Multilayer Compositions with a Hierarchical Structure. Key Engineering Materials, 0, 910, 642-647.	0.4	0
49	Research of structure and mechanical properties of high-entropic heat- and wear-resistant compositions TiNiZrHfCoCu-cBNCoNiAlY. AlP Conference Proceedings, 2022, , .	0.4	0