## José Manuel SÃ;nchez-VizcaÃ-no

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114964/publications.pdf Version: 2024-02-01



José Manuel

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Epidemiology of African swine fever virus. Virus Research, 2013, 173, 191-197.                                                                                                                                                         | 2.2 | 327       |
| 2  | An Update on the Epidemiology and Pathology ofÂAfrican Swine Fever. Journal of Comparative<br>Pathology, 2015, 152, 9-21.                                                                                                              | 0.4 | 307       |
| 3  | Social Network Analysis. Review of General Concepts and Use in Preventive Veterinary Medicine.<br>Transboundary and Emerging Diseases, 2009, 56, 109-120.                                                                              | 3.0 | 204       |
| 4  | African Swine Fever: An Epidemiological Update. Transboundary and Emerging Diseases, 2012, 59, 27-35.                                                                                                                                  | 3.0 | 186       |
| 5  | Highly Sensitive PCR Assay for Routine Diagnosis of African Swine Fever Virus in Clinical Samples.<br>Journal of Clinical Microbiology, 2003, 41, 4431-4434.                                                                           | 3.9 | 173       |
| 6  | Vaccines against bluetongue in Europe. Comparative Immunology, Microbiology and Infectious<br>Diseases, 2008, 31, 101-120.                                                                                                             | 1.6 | 163       |
| 7  | African swine fever (ASF): Five years around Europe. Veterinary Microbiology, 2013, 165, 45-50.                                                                                                                                        | 1.9 | 142       |
| 8  | African swine fever virus transmission cycles in Central Europe: Evaluation of wild boar-soft tick<br>contacts through detection of antibodies against Ornithodoros erraticus saliva antigen. BMC<br>Veterinary Research, 2016, 12, 1. | 1.9 | 125       |
| 9  | Early detection of PrP res in BSE-infected bovine PrP transgenic mice. Archives of Virology, 2003, 148, 677-691.                                                                                                                       | 2.1 | 119       |
| 10 | Thirty-Five-Year Presence of African Swine Fever in Sardinia: History, Evolution and Risk Factors for<br>Disease Maintenance. Transboundary and Emerging Diseases, 2016, 63, e165-e177.                                                | 3.0 | 108       |
| 11 | Assessing the Risk of African Swine Fever Introduction into the European Union by Wild Boar.<br>Transboundary and Emerging Diseases, 2015, 62, 272-279.                                                                                | 3.0 | 96        |
| 12 | Morbillivirus and Pilot Whale Deaths, Mediterranean Sea. Emerging Infectious Diseases, 2008, 14,<br>792-794.                                                                                                                           | 4.3 | 89        |
| 13 | Metagenomic Detection of Viral Pathogens in Spanish Honeybees: Co-Infection by Aphid Lethal<br>Paralysis, Israel Acute Paralysis and Lake Sinai Viruses. PLoS ONE, 2013, 8, e57459.                                                    | 2.5 | 89        |
| 14 | Control of bluetongue in Europe. Veterinary Microbiology, 2013, 165, 33-37.                                                                                                                                                            | 1.9 | 86        |
| 15 | Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs.<br>Transboundary and Emerging Diseases, 2015, 62, 612-622.                                                                       | 3.0 | 86        |
| 16 | Molecular epidemiology of a large classical swine fever epidemic in the European Union in 1997–1998.<br>Veterinary Microbiology, 2000, 77, 17-27.                                                                                      | 1.9 | 84        |
| 17 | Risk of African swine fever introduction into the European Union through transport-associated<br>routes: returning trucks and waste from international ships and planes. BMC Veterinary Research,<br>2012, 8, 149.                     | 1.9 | 81        |
| 18 | Introduction of African Swine Fever into the European Union through Illegal Importation of Pork and<br>Pork Products. PLoS ONE, 2013, 8, e61104.                                                                                       | 2.5 | 77        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chemistry, 1997, 59, 555-559.                                                                                                           | 8.2 | 73        |
| 20 | First Oral Vaccination of Eurasian Wild Boar Against African Swine Fever Virus Genotype II. Frontiers<br>in Veterinary Science, 2019, 6, 137.                                                                                  | 2.2 | 73        |
| 21 | Horizontal Transmissible Protection against Myxomatosis and Rabbit Hemorrhagic Disease by Using a<br>Recombinant Myxoma Virus. Journal of Virology, 2000, 74, 1114-1123.                                                       | 3.4 | 72        |
| 22 | Overview of the First International Workshop to Define Swine Leukocyte Cluster of Differentiation (CD) Antigens. Veterinary Immunology and Immunopathology, 1994, 43, 193-206.                                                 | 1.2 | 71        |
| 23 | Relevant Measures to Prevent the Spread of African Swine Fever in the European Union Domestic Pig<br>Sector. Frontiers in Veterinary Science, 2018, 5, 77.                                                                     | 2.2 | 71        |
| 24 | Detection of African Swine Fever Virus Antibodies in Serum and Oral Fluid Specimens Using a<br>Recombinant Protein 30 (p30) Dual Matrix Indirect ELISA. PLoS ONE, 2016, 11, e0161230.                                          | 2.5 | 70        |
| 25 | Bluetongue vaccination in Europe. Expert Review of Vaccines, 2010, 9, 989-991.                                                                                                                                                 | 4.4 | 66        |
| 26 | Experimental infection of European red deer (Cervus elaphus) with bluetongue virus serotypes 1 and 8.<br>Veterinary Microbiology, 2010, 145, 148-152.                                                                          | 1.9 | 65        |
| 27 | Quantitative Risk Assessment for the Introduction of African Swine Fever Virus into the European<br>Union by Legal Import of Live Pigs. Transboundary and Emerging Diseases, 2012, 59, 134-144.                                | 3.0 | 65        |
| 28 | A highly sensitive and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and Classical swine fever in clinical samples. Veterinary Research, 2004, 35, 551-563. | 3.0 | 61        |
| 29 | Determination of the immunotoxic potential of heavy metals on the functional activity of bottlenose dolphin leukocytes in vitro. Veterinary Immunology and Immunopathology, 2008, 121, 189-198.                                | 1.2 | 60        |
| 30 | Constant Hepatitis E Virus (HEV) Circulation in Wild Boar and Red Deer in Spain: An Increasing<br>Concern Source of HEV Zoonotic Transmission. Transboundary and Emerging Diseases, 2016, 63,<br>e360-e368.                    | 3.0 | 60        |
| 31 | Expression of the major core antigen VP7 of African horsesickness virus by a recombinant baculovirus and its use as a group-specific diagnostic reagent. Journal of General Virology, 1992, 73, 925-931.                       | 2.9 | 59        |
| 32 | Monitoring of African Swine Fever in the Wild Boar Population of the Most Recent Endemic Area of<br>Spain. Transboundary and Emerging Diseases, 2012, 59, 526-531.                                                             | 3.0 | 59        |
| 33 | Natural SARS-CoV-2 Infection in Kept Ferrets, Spain. Emerging Infectious Diseases, 2021, 27, 1994-1996.                                                                                                                        | 4.3 | 59        |
| 34 | Subclinical Bovine Spongiform Encephalopathy Infection in Transgenic Mice Expressing Porcine Prion<br>Protein. Journal of Neuroscience, 2004, 24, 5063-5069.                                                                   | 3.6 | 56        |
| 35 | The role of wildlife in bluetongue virus maintenance in Europe: Lessons learned after the natural infection in Spain. Virus Research, 2014, 182, 50-58.                                                                        | 2.2 | 54        |
| 36 | Inhibitory effect of African swine fever virus on lectin-dependent swine lymphocyte proliferation.<br>Veterinary Immunology and Immunopathology, 1990, 26, 71-80.                                                              | 1.2 | 53        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. European Journal of Wildlife Research, 2016, 62, 65-78.                           | 1.4 | 53        |
| 38 | A sensitive one-step real-time RT-PCR method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera. Journal of Virological Methods, 2008, 147, 275-281.            | 2.1 | 52        |
| 39 | A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Veterinary Research, 2012, 8, 148.                               | 1.9 | 49        |
| 40 | Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish<br>Mediterranean sea. BMC Veterinary Research, 2013, 9, 106.                                            | 1.9 | 48        |
| 41 | Antigenic Properties and Diagnostic Potential of African Swine Fever Virus Protein pp62 Expressed in<br>Insect Cells. Journal of Clinical Microbiology, 2006, 44, 950-956.                              | 3.9 | 47        |
| 42 | Rapid and differential diagnosis of foot-and-mouth disease, swine vesicular disease, and vesicular stomatitis by a new multiplex RT-PCR assay. Journal of Virological Methods, 2008, 147, 301-311.      | 2.1 | 47        |
| 43 | Combined application of social network and cluster detection analyses for temporal-spatial characterization of animal movements in Salamanca, Spain. Preventive Veterinary Medicine, 2009, 91, 29-38.   | 1.9 | 46        |
| 44 | Full protection against African horsesickness (AHS) in horses induced by baculovirus-derived AHS<br>virus serotype 4 VP2, VP5 and VP7. Journal of General Virology, 1996, 77, 1211-1221.                | 2.9 | 44        |
| 45 | Phylogenetic analysis of a new Cetacean morbillivirus from a short-finned pilot whale stranded in the Canary Islands. Research in Veterinary Science, 2011, 90, 324-328.                                | 1.9 | 44        |
| 46 | Potential use of oral fluid samples for serological diagnosis of African swine fever. Veterinary<br>Microbiology, 2013, 165, 135-139.                                                                   | 1.9 | 44        |
| 47 | Phylodynamics and evolutionary epidemiology of African swine fever p72-CVR genes in Eurasia and Africa. PLoS ONE, 2018, 13, e0192565.                                                                   | 2.5 | 44        |
| 48 | High Load of Deformed Wing Virus and Varroa destructor Infestation Are Related to Weakness of<br>Honey Bee Colonies in Southern Spain. Frontiers in Microbiology, 2019, 10, 1331.                       | 3.5 | 43        |
| 49 | Characterization of Protection Afforded by a Bivalent Virus-Like Particle Vaccine against Bluetongue<br>Virus Serotypes 1 and 4 in Sheep. PLoS ONE, 2011, 6, e26666.                                    | 2.5 | 43        |
| 50 | Modular framework to assess the risk of African swine fever virus entry into the European Union.<br>BMC Veterinary Research, 2014, 10, 145.                                                             | 1.9 | 42        |
| 51 | Role of Wild Boar in the Spread of Classical Swine Fever in Japan. Pathogens, 2019, 8, 206.                                                                                                             | 2.8 | 42        |
| 52 | Orbiviruses in the Mediterranean Basin: Updated Epidemiological Situation of Bluetongue and New<br>Methods for the Detection of BTV Serotype 4. Transboundary and Emerging Diseases, 2008, 55, 205-214. | 3.0 | 41        |
| 53 | Detection of African horsesickness virus in infected spleens by a sandwich ELISA using two monoclonal antibodies specific for VP7. Journal of Virological Methods, 1992, 38, 229-242.                   | 2.1 | 40        |
| 54 | First field trial of a transmissible recombinant vaccine against myxomatosis and rabbit hemorrhagic disease. Vaccine, 2001, 19, 4536-4543.                                                              | 3.8 | 40        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A novel spatial and stochastic model to evaluate the within- and between-farm transmission of<br>classical swine fever virus. I. General concepts and description of the model. Veterinary<br>Microbiology, 2011, 147, 300-309. | 1.9 | 40        |
| 56 | Systematic review of surveillance systems and methods for early detection of exotic, new and re-emerging diseases in animal populations. Epidemiology and Infection, 2015, 143, 2018-2042.                                      | 2.1 | 40        |
| 57 | Farm-level risk factors for the occurrence, new infection or persistence of tuberculosis in cattle herds from South-Central Spain. Preventive Veterinary Medicine, 2014, 116, 268-278.                                          | 1.9 | 39        |
| 58 | Presence of herpesvirus in striped dolphins stranded during the cetacean morbillivirus epizootic along the Mediterranean Spanish coast in 2007. Archives of Virology, 2010, 155, 1307-1311.                                     | 2.1 | 38        |
| 59 | The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus. Veterinary Journal, 2013, 198, 182-186.                                                                  | 1.7 | 38        |
| 60 | Evaluation of the risk factors contributing to the African swine fever occurrence in Sardinia, Italy.<br>Frontiers in Microbiology, 2015, 06, 314.                                                                              | 3.5 | 38        |
| 61 | Approximate Solutions of Predictive Relativistic Mechanics for the Electromagnetic Interaction.<br>Physical Review D, 1973, 7, 1099-1106.                                                                                       | 4.7 | 37        |
| 62 | Bluetongue Virus Serotypes 1 and 4 in Red Deer, Spain. Emerging Infectious Diseases, 2010, 16, 518-520.                                                                                                                         | 4.3 | 37        |
| 63 | Free-Ranging Pig and Wild Boar Interactions in an Endemic Area of African Swine Fever. Frontiers in<br>Veterinary Science, 2019, 6, 376.                                                                                        | 2.2 | 37        |
| 64 | Spatial and Functional Organization of Pig Trade in Different European Production Systems:<br>Implications for Disease Prevention and Control. Frontiers in Veterinary Science, 2016, 3, 4.                                     | 2.2 | 36        |
| 65 | The use of African horse sickness virus NS3 protein, expressed in bacteria, as a marker to differentiate infected from vaccinated horses. Virus Research, 1995, 38, 205-218.                                                    | 2.2 | 34        |
| 66 | Use of monoclonal antibodies for detection of infectious pancreatic necrosis virus by the<br>enzyme-linked immunosorbent assay (ELISA). Diseases of Aquatic Organisms, 1990, 8, 157-163.                                        | 1.0 | 34        |
| 67 | A case study of an outbreak of African swine fever in Spain. British Veterinary Journal, 1995, 151, 203-214.                                                                                                                    | 0.5 | 33        |
| 68 | Proteinase K enhanced immunoreactivity of the prion protein-specific monoclonal antibody 2A11.<br>Neuroscience Research, 2004, 48, 75-83.                                                                                       | 1.9 | 33        |
| 69 | Adenovirus-vectored African Swine Fever Virus Antigens Cocktail Is Not Protective against Virulent<br>Arm07 Isolate in Eurasian Wild Boar. Pathogens, 2020, 9, 171.                                                             | 2.8 | 33        |
| 70 | Motion-based video monitoring for early detection of livestock diseases: The case of African swine fever. PLoS ONE, 2017, 12, e0183793.                                                                                         | 2.5 | 33        |
| 71 | Herpes simplex-like infection in a bottlenose dolphin stranded in the Canary Islands. Diseases of Aquatic Organisms, 2008, 81, 73-76.                                                                                           | 1.0 | 31        |
| 72 | Largeâ€scale study on virological and serological prevalence of SARSâ€CoVâ€2 in cats and dogs in Spain.<br>Transboundary and Emerging Diseases, 2022, 69, .                                                                     | 3.0 | 31        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | One-step real-time quantitative PCR assays for the detection and field study of Sacbrood honeybee and Acute bee paralysis viruses. Journal of Virological Methods, 2009, 161, 240-246.                           | 2.1 | 30        |
| 74 | A simulation model for the potential spread of foot-and-mouth disease in the Castile and Leon region of Spain. Preventive Veterinary Medicine, 2010, 96, 19-29.                                                  | 1.9 | 30        |
| 75 | Molecular diagnosis of lobomycosis-like disease in a bottlenose dolphin in captivity. Medical<br>Mycology, 2012, 50, 106-109.                                                                                    | 0.7 | 30        |
| 76 | High Doses of Inactivated African Swine Fever Virus Are Safe, but Do Not Confer Protection against a<br>Virulent Challenge. Vaccines, 2021, 9, 242.                                                              | 4.4 | 30        |
| 77 | Pathogenesis of African Horse Sickness: Ultrastructural Study of the Capillaries in Experimental<br>Infection. Journal of Comparative Pathology, 1999, 121, 101-116.                                             | 0.4 | 29        |
| 78 | Comparative study of clinical courses, gross lesions, acute phase response and coagulation disorders<br>in sheep inoculated with bluetongue virus serotype 1 and 8. Veterinary Microbiology, 2013, 166, 184-194. | 1.9 | 29        |
| 79 | Detection of African Swine Fever Antibodies in Experimental and Field Samples from the Russian<br>Federation: Implications for Control. Transboundary and Emerging Diseases, 2016, 63, e436-e440.                | 3.0 | 29        |
| 80 | Risk mapping of West Nile virus circulation in Spain, 2015. Acta Tropica, 2017, 169, 163-169.                                                                                                                    | 2.0 | 29        |
| 81 | Quantitative risk assessment of African swine fever virus introduction to Japan via pork products<br>brought in air passengers' luggage. Transboundary and Emerging Diseases, 2020, 67, 894-905.                 | 3.0 | 29        |
| 82 | Role of hepatic macrophages during the viral haemorrhagic fever induced by African Swine Fever<br>Virus. Histology and Histopathology, 2008, 23, 683-91.                                                         | 0.7 | 29        |
| 83 | Serological evidence of FMD subclinical infection in sheep population during the 1999 epidemic in Morocco. Veterinary Microbiology, 2002, 85, 13-21.                                                             | 1.9 | 28        |
| 84 | Detection of foot-and-mouth disease virus from culture and clinical samples by reverse<br>transcription-PCR coupled to restriction enzyme and sequence analysis. Veterinary Research, 2003, 34,<br>105-117.      | 3.0 | 28        |
| 85 | Identification of suitable areas for the occurrence of Rift Valley fever outbreaks in Spain using a multiple criteria decision framework. Veterinary Microbiology, 2013, 165, 71-78.                             | 1.9 | 27        |
| 86 | Evidence of shared bovine viral diarrhea infections between red deer and extensively raised cattle in south-central Spain. BMC Veterinary Research, 2016, 12, 11.                                                | 1.9 | 27        |
| 87 | First Detection of SARS-CoV-2 B.1.1.7 Variant of Concern in an Asymptomatic Dog in Spain. Viruses, 2021, 13, 1379.                                                                                               | 3.3 | 27        |
| 88 | First Case of Highly Pathogenic Avian Influenza in Poultry in Spain. Transboundary and Emerging<br>Diseases, 2010, 57, no-no.                                                                                    | 3.0 | 26        |
| 89 | Genetic comparison among dolphin morbillivirus in the 1990–1992 and 2006–2008 Mediterranean outbreaks. Infection, Genetics and Evolution, 2011, 11, 1913-1920.                                                   | 2.3 | 26        |
| 90 | Experimental African Swine Fever: Evidence of the Virus in Interstitial Tissues of the Kidney. Veterinary Pathology, 1989, 26, 173-176.                                                                          | 1.7 | 25        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Evaluation of an enzyme-linked immunosorbent assay to detect specific antibodies in pigs infested with the tick Ornithodoros erraticus (Argasidae). Veterinary Parasitology, 1990, 37, 145-153.                                                | 1.8 | 25        |
| 92  | Novel gel-based and real-time PCR assays for the improved detection of African horse sickness virus.<br>Journal of Virological Methods, 2008, 151, 87-94.                                                                                      | 2.1 | 25        |
| 93  | Rapid and sensitive detection of African horse sickness virus by real-time PCR. Research in Veterinary Science, 2009, 86, 353-358.                                                                                                             | 1.9 | 25        |
| 94  | First case of erysipelas in a free-ranging bottlenose dolphin (Tursiops truncatus) stranded in the<br>Mediterranean Sea. Diseases of Aquatic Organisms, 2011, 97, 167-170.                                                                     | 1.0 | 24        |
| 95  | Characterization of African horsesickness virus serotype 4-induced polypeptides in Vero cells and their reactivity in Western immunoblotting. Journal of General Virology, 1993, 74, 81-87.                                                    | 2.9 | 23        |
| 96  | Bluetongue in Spain: From the First Outbreak to 2012. Transboundary and Emerging Diseases, 2014, 61, e1-e11.                                                                                                                                   | 3.0 | 23        |
| 97  | Mathematical formulation and validation of the Be-FAST model for Classical Swine Fever Virus spread between and within farms. Annals of Operations Research, 2014, 219, 25-47.                                                                 | 4.1 | 23        |
| 98  | Diffusion in AgAuPd thin film microcouples. Acta Metallurgica, 1974, 22, 709-719.                                                                                                                                                              | 2.1 | 22        |
| 99  | Isolation of an attenuated myxoma virus field strain that can confer protection against myxomatosis on contacts of vaccinates. Archives of Virology, 2000, 145, 759-771.                                                                       | 2.1 | 22        |
| 100 | The Role of Pulmonary Intravascular Macrophages in the Pathogenesis of African Horse Sickness.<br>Journal of Comparative Pathology, 1999, 121, 25-38.                                                                                          | 0.4 | 21        |
| 101 | Molecular differentiation between NS1 gene of a field strain Bluetongue virus serotype 2 (BTV-2) and NS1 gene of an attenuated BTV-2 vaccine. Veterinary Microbiology, 2002, 86, 337-341.                                                      | 1.9 | 21        |
| 102 | Scientific review on African Swine Fever. EFSA Supporting Publications, 2009, 6, 5E.                                                                                                                                                           | 0.7 | 21        |
| 103 | African swine fever vaccine: Turning a dream into reality. Transboundary and Emerging Diseases, 2021, 68, 2657-2668.                                                                                                                           | 3.0 | 21        |
| 104 | Leukocyte-Dependent Platelet Vasoactive Amine Release and Immune Complex Deposition in African<br>Swine Fever. Veterinary Pathology, 1981, 18, 813-826.                                                                                        | 1.7 | 20        |
| 105 | Modulation of splenic macrophages, and swine leukocyte antigen (SLA) and viral antigen expression following African swine fever virus (ASFV) inoculation. Archives of Virology, 1992, 123, 145-156.                                            | 2.1 | 20        |
| 106 | A Quantitative Assessment of the Risk for Highly Pathogenic Avian Influenza Introduction into Spain<br>via Legal Trade of Live Poultry. Risk Analysis, 2010, 30, 798-807.                                                                      | 2.7 | 20        |
| 107 | Evaluation of the risk of classical swine fever (CSF) spread from backyard pigs to other domestic pigs<br>by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria. Veterinary<br>Microbiology, 2013, 165, 79-85. | 1.9 | 20        |
| 108 | A multi-analysis approach for space–time and economic evaluation of risks related with livestock<br>diseases: The example of FMD in Peru. Preventive Veterinary Medicine, 2014, 114, 47-63.                                                    | 1.9 | 20        |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Immune related genes as markers for monitoring health status of honey bee colonies. BMC Veterinary<br>Research, 2019, 15, 72.                                                                                                         | 1.9 | 20        |
| 110 | Comparative analysis of cellular immune responses and cytokine levels in sheep experimentally infected with bluetongue virus serotype 1 and 8. Veterinary Microbiology, 2015, 177, 95-105.                                            | 1.9 | 19        |
| 111 | Retrospective spatial analysis for African swine fever in endemic areas to assess interactions between susceptible host populations. PLoS ONE, 2020, 15, e0233473.                                                                    | 2.5 | 19        |
| 112 | Laboratory diagnosis and disease occurrence in the current African swine fever eradication program<br>in Spain, 1989–1991. Preventive Veterinary Medicine, 1993, 17, 225-234.                                                         | 1.9 | 18        |
| 113 | Detection of bluetongue serotype 4 in mouflons (Ovis aries musimon) from Spain. Veterinary<br>Microbiology, 2010, 141, 164-167.                                                                                                       | 1.9 | 18        |
| 114 | Simultaneous diagnosis of Cetacean morbillivirus infection in dolphins stranded in the Spanish<br>Mediterranean sea in 2011 using a novel Universal Probe Library (UPL) RT-PCR assay. Veterinary<br>Microbiology, 2013, 165, 109-114. | 1.9 | 18        |
| 115 | Detection of Toxoplasma gondii in three common bottlenose dolphins (Tursiops truncatus); A first<br>description from the Eastern Mediterranean Sea. Veterinary Parasitology, 2018, 258, 74-78.                                        | 1.8 | 18        |
| 116 | A stochastic model to quantify the risk of introduction of classical swine fever virus through import of domestic and wild boars. Epidemiology and Infection, 2009, 137, 1505-1515.                                                   | 2.1 | 17        |
| 117 | Immunohistochemical Detection of Bluetongue Virus in Fixed Tissue. Journal of Comparative<br>Pathology, 2010, 143, 20-28.                                                                                                             | 0.4 | 17        |
| 118 | Reproductive ratio for the local spread of highly pathogenic avian influenza in wild bird populations of Europe, 2005–2008. Epidemiology and Infection, 2011, 139, 99-104.                                                            | 2.1 | 17        |
| 119 | Risk of Introduction of H5N1 HPAI from Europe to Spain by Wild Water Birds in Autumn.<br>Transboundary and Emerging Diseases, 2009, 56, 86-98.                                                                                        | 3.0 | 16        |
| 120 | Development and evaluation of a SYBR Green real-time RT-PCR assay for evaluation of cytokine gene expression in horse. Cytokine, 2013, 61, 50-53.                                                                                     | 3.2 | 16        |
| 121 | First molecular detection and characterization of herpesvirus and poxvirus in a Pacific walrus<br>(Odobenus rosmarus divergens). BMC Veterinary Research, 2014, 10, 968.                                                              | 1.9 | 16        |
| 122 | Prediction of Pig Trade Movements in Different European Production Systems Using Exponential<br>Random Graph Models. Frontiers in Veterinary Science, 2017, 4, 27.                                                                    | 2.2 | 16        |
| 123 | First Detection of SARS-CoV-2 B.1.617.2 (Delta) Variant of Concern in a Symptomatic Cat in Spain.<br>Frontiers in Veterinary Science, 2022, 9, 841430.                                                                                | 2.2 | 16        |
| 124 | Molecular cloning, expression and immunological analysis of the capsid precursor polypeptide (P1)<br>from swine vesicular disease virus. Virus Research, 1998, 57, 163-170.                                                           | 2.2 | 15        |
| 125 | Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model. Geospatial Health, 2014, 8, 489.                                               | 0.8 | 15        |
| 126 | First molecular determination of herpesvirus from two mysticete species stranded in the Mediterranean Sea. BMC Veterinary Research, 2015, 11, 283.                                                                                    | 1.9 | 15        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus: II Validation of the model. Veterinary Microbiology, 2012, 155, 21-32.                                  | 1.9 | 14        |
| 128 | Evaluation of the spatial and temporal distribution of and risk factors for Bluetongue serotype 1<br>epidemics in sheep Extremadura (Spain), 2007–2011. Preventive Veterinary Medicine, 2014, 116, 279-295.                       | 1.9 | 14        |
| 129 | First Detection of Antibodies Against African Swine Fever Virus in Faeces Samples. Transboundary and<br>Emerging Diseases, 2015, 62, 594-602.                                                                                     | 3.0 | 14        |
| 130 | Novel adenovirus detected in captive bottlenose dolphins (Tursiops truncatus) suffering from self-limiting gastroenteritis. BMC Veterinary Research, 2015, 11, 53.                                                                | 1.9 | 14        |
| 131 | Computer Vision Applied to Detect Lethargy through Animal Motion Monitoring: A Trial on African<br>Swine Fever in Wild Boar. Animals, 2020, 10, 2241.                                                                             | 2.3 | 14        |
| 132 | Persistence of African swine fever antibody reactivity on ELISA and immunoblotting assays. Veterinary Record, 1993, 133, 189-190.                                                                                                 | 0.3 | 14        |
| 133 | Risk assessment and cost-effectiveness analysis of Aujeszky's disease virus introduction through breeding and fattening pig movements into Spain. Preventive Veterinary Medicine, 2009, 90, 10-16.                                | 1.9 | 13        |
| 134 | Thermal reference points as an index for monitoring body temperature in marine mammals. BMC<br>Research Notes, 2015, 8, 411.                                                                                                      | 1.4 | 13        |
| 135 | Importance of Ecological Factors and Colony Handling for Optimizing Health Status of Apiaries in Mediterranean Ecosystems. PLoS ONE, 2016, 11, e0164205.                                                                          | 2.5 | 13        |
| 136 | Benefit-cost analysis of the current African swine fever eradication program in Spain and of an accelerated program. Preventive Veterinary Medicine, 1993, 17, 235-249.                                                           | 1.9 | 12        |
| 137 | Risk Assessment Applied to Spain's Prevention Strategy Against Highly Pathogenic Avian Influenza Virus<br>H5N1. Avian Diseases, 2007, 51, 507-511.                                                                                | 1.0 | 12        |
| 138 | Analytical sensitivity and specificity of a RT-PCR for the diagnosis and characterization of the spatial distribution of threeApis melliferaviral diseases in Spain. Apidologie, 2008, 39, 607-617.                               | 2.0 | 12        |
| 139 | Identifying areas for infectious animal disease surveillance in the absence of population data: Highly<br>pathogenic avian influenza in wild bird populations of Europe. Preventive Veterinary Medicine, 2010,<br>96, 1-8.        | 1.9 | 12        |
| 140 | Evaluating surveillance in wild birds by the application of risk assessment of avian influenza introduction into Spain. Epidemiology and Infection, 2011, 139, 91-98.                                                             | 2.1 | 12        |
| 141 | Identification of suitable areas for West Nile virus outbreaks in equid populations for application in surveillance plans: the example of the Castile and Leon region of Spain. Epidemiology and Infection, 2012, 140, 1617-1631. | 2.1 | 12        |
| 142 | Evidence for BTV-4 circulation in free-ranging red deer (Cervus elaphus) in Cabañeros National Park,<br>Spain. Veterinary Microbiology, 2012, 159, 40-46.                                                                         | 1.9 | 12        |
| 143 | Potential Role of Proinflammatory Cytokines in the Pathogenetic Mechanisms of Vascular Lesions in Goats Naturally Infected with Bluetongue Virus Serotype 1. Transboundary and Emerging Diseases, 2013, 60, 252-262.              | 3.0 | 12        |
| 144 | Social Network Analysis of Equidae Movements and Its Application to Risk-Based Surveillance and to<br>Control of Spread of Potential Equidae Diseases. Transboundary and Emerging Diseases, 2013, 60,<br>448-459.                 | 3.0 | 12        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Implementation and validation of an economic module in the Be-FAST model to predict costs generated by livestock disease epidemics: Application to classical swine fever epidemics in Spain. Preventive Veterinary Medicine, 2016, 126, 66-73. | 1.9 | 12        |
| 146 | Distinct African Swine Fever Virus Shedding in Wild Boar Infected with Virulent and Attenuated<br>Isolates. Vaccines, 2020, 8, 767.                                                                                                            | 4.4 | 12        |
| 147 | Risk Assessment of African Swine Fever Virus Exposure to Sus scrofa in Japan Via Pork Products<br>Brought in Air Passengers' Luggage. Pathogens, 2020, 9, 302.                                                                                 | 2.8 | 12        |
| 148 | African Swine Fever Survey in a European Context. Pathogens, 2022, 11, 137.                                                                                                                                                                    | 2.8 | 12        |
| 149 | Identifying equine premises at high risk of introduction of vector-borne diseases using geo-statistical and space-time analyses. Preventive Veterinary Medicine, 2011, 100, 100-108.                                                           | 1.9 | 11        |
| 150 | Development of a Suspension Microarray for the Genotyping of African Swine Fever Virus Targeting<br>the SNPs in the C-Terminal End of the p72 Gene Region of the Genome. Transboundary and Emerging<br>Diseases, 2013, 60, 378-383.            | 3.0 | 11        |
| 151 | Alpha- and gammaherpesviruses in stranded striped dolphins (Stenella coeruleoalba) from Spain: first<br>molecular detection of gammaherpesvirus infection in central nervous system of odontocetes. BMC<br>Veterinary Research, 2020, 16, 288. | 1.9 | 11        |
| 152 | Short communication. First report of black queen-cell virus detection in honey bees (Apis mellifera)<br>in Spain. Spanish Journal of Agricultural Research, 2007, 5, 322.                                                                      | 0.6 | 11        |
| 153 | Systematic Determination of Herpesvirus in Free-Ranging Cetaceans Stranded in the Western<br>Mediterranean: Tissue Tropism and Associated Lesions. Viruses, 2021, 13, 2180.                                                                    | 3.3 | 11        |
| 154 | Natural Immunity of Sheep and Lambs Against the Schmallenberg Virus Infection. Transboundary and Emerging Diseases, 2016, 63, e220-e228.                                                                                                       | 3.0 | 10        |
| 155 | Genetic heterogeneity of dolphin morbilliviruses detected in the Spanish Mediterranean in in inter-epizootic period. BMC Veterinary Research, 2018, 14, 248.                                                                                   | 1.9 | 10        |
| 156 | A model for the assessment of bluetongue virus serotype 1 persistence in Spain. PLoS ONE, 2020, 15, e0232534.                                                                                                                                  | 2.5 | 10        |
| 157 | Improved Diagnosis for Nine Viral Diseases Considered as Notifiable By the World Organization for Animal Health. Transboundary and Emerging Diseases, 2008, 55, 215-225.                                                                       | 3.0 | 9         |
| 158 | Quantification of the risk for introduction of virulent Newcastle disease virus into Spain through<br>legal trade of live poultry from European Union countries. Avian Pathology, 2010, 39, 459-465.                                           | 2.0 | 9         |
| 159 | Characterization of the Immune Response Induced by a Commercially Available Inactivated Bluetongue<br>Virus Serotype 1 Vaccine in Sheep. Scientific World Journal, The, 2012, 2012, 1-8.                                                       | 2.1 | 9         |
| 160 | Porcine reproductive and respiratory syndrome (PRRS) virus in wild boar and Iberian pigs in south-central Spain. European Journal of Wildlife Research, 2013, 59, 859-867.                                                                     | 1.4 | 9         |
| 161 | Nucleotide sequence variations may be associated with virulence of deformed wing virus. Apidologie, 2019, 50, 482-496.                                                                                                                         | 2.0 | 9         |
| 162 | Evaluation of two ELISA kits for the detection of Aujeszky's disease antibodies in pigs. Veterinary Record, 1992, 131, 391-393.                                                                                                                | 0.3 | 9         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Identification of Suitable Areas for African Horse Sickness Virus Infections in Spanish Equine<br>Populations. Transboundary and Emerging Diseases, 2016, 63, 564-573.                                                                                               | 3.0 | 8         |
| 164 | Body temperature and motion: Evaluation of an online monitoring system in pigs challenged with<br>Porcine Reproductive & Respiratory Syndrome Virus. Research in Veterinary Science, 2017, 114, 482-488.                                                             | 1.9 | 8         |
| 165 | Novel and highly sensitive SYBR® Green real-time pcr for poxvirus detection in odontocete cetaceans.<br>Journal of Virological Methods, 2018, 259, 45-49.                                                                                                            | 2.1 | 8         |
| 166 | Short communication. Can highly pathogenic avian influenza (HPAI) reach the Iberian Peninsula from<br>Asia by means of migratory birds?. Spanish Journal of Agricultural Research, 2006, 4, 140.                                                                     | 0.6 | 8         |
| 167 | A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Scientific Reports, 2021, 11, 21560.                                                                                                                       | 3.3 | 8         |
| 168 | Evaluation of the clinical evolution and transmission of SARS-CoV-2 infection in cats by simulating natural routes of infection. Veterinary Research Communications, 2022, 46, 837-852.                                                                              | 1.6 | 8         |
| 169 | Survival of swine vesicular disease virus in Spanish Serrano cured hams and Iberian cured hams, shoulders and loins. Food Microbiology, 1993, 10, 263-268.                                                                                                           | 4.2 | 7         |
| 170 | Immunohistopathological study of African swine fever (strain E-75)-infected bone marrow. Journal of<br>Comparative Pathology, 1996, 114, 399-406.                                                                                                                    | 0.4 | 6         |
| 171 | Plasmid containing CpG motifs enhances the efficacy of porcine reproductive and respiratory syndrome live attenuated vaccine. Veterinary Immunology and Immunopathology, 2011, 144, 405-409.                                                                         | 1.2 | 6         |
| 172 | Identification of the pattern of appearance and development of thermal windows in the skin of<br>juvenile Pacific walruses ( <i>Odobenus rosmarus divergens</i> ) in a controlled environment. Marine<br>Mammal Science, 2013, 29, 167-176.                          | 1.8 | 6         |
| 173 | Two cases of pseudohermaphroditism in loggerhead sea turtles Caretta caretta. Diseases of Aquatic<br>Organisms, 2013, 105, 183-191.                                                                                                                                  | 1.0 | 6         |
| 174 | Development of a Luminex-Based DIVA Assay for Serological Detection of African Horse Sickness Virus in Horses. Transboundary and Emerging Diseases, 2016, 63, 353-359.                                                                                               | 3.0 | 6         |
| 175 | An advection-deposition-survival model to assess the risk of introduction of vector-borne diseases through the wind: Application to bluetongue outbreaks in Spain. PLoS ONE, 2018, 13, e0194573.                                                                     | 2.5 | 6         |
| 176 | Scientific review on African Horse Sickness. EFSA Supporting Publications, 2009, 6, 4E.                                                                                                                                                                              | 0.7 | 5         |
| 177 | A New Approach for Rapidly Assessing the Risk of Aujeszky's Disease Reintroduction into a Disease-free<br>Spanish Territory by Analysing the Movement of Live Pigs and Potential Contacts with Wild Boar.<br>Transboundary and Emerging Diseases, 2014, 61, 350-361. | 3.0 | 5         |
| 178 | Short communication. Presence, quantification and phylogeny of Israeli acute paralysis virus of honeybees in Andalusia (Spain). Spanish Journal of Agricultural Research, 2013, 11, 708.                                                                             | 0.6 | 5         |
| 179 | Detection and assessment of electrocution in endangered raptors by infrared thermography. BMC<br>Veterinary Research, 2013, 9, 149.                                                                                                                                  | 1.9 | 4         |
| 180 | Short communication. First detection of Israeli Acute Paralysis Virus (IAPV) in Spanish honeybees.<br>Spanish Journal of Agricultural Research, 2010, 8, 308.                                                                                                        | 0.6 | 4         |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Fluorescent microbead-based immunoassay for anti-Erysipelothrix rhusiopathiae antibody detection in cetaceans. Diseases of Aquatic Organisms, 2016, 117, 237-243.                                                                           | 1.0 | 4         |
| 182 | Construction of Swine-Specific CpG Motif Enriched Plasmid and the Study of Its Immunostimulatory<br>Effects Both <i>In Vitro</i> and <i>In Vivo</i> . Journal of Veterinary Medical<br>Science, 2012, 74, 1647-1650.                        | 0.9 | 3         |
| 183 | Global gene expression analysis in skin biopsies of European red deer experimentally infected with bluetongue virus serotypes 1 and 8. Veterinary Microbiology, 2012, 161, 26-35.                                                           | 1.9 | 3         |
| 184 | CpGâ€enriched plasmid enhances the efficacy of the traditional footâ€andâ€mouth disease killed vaccine.<br>Microbiology and Immunology, 2012, 56, 332-337.                                                                                  | 1.4 | 3         |
| 185 | Risk of Introduction of Infectious Animal Diseases for Europe Based on the Health Situation of North<br>Africa and the Arabian Peninsula. Frontiers in Veterinary Science, 2019, 6, 293.                                                    | 2.2 | 3         |
| 186 | Detection of Antibodies against Mycobacterium bovis in Oral Fluid from Eurasian Wild Boar.<br>Pathogens, 2020, 9, 242.                                                                                                                      | 2.8 | 3         |
| 187 | Does pollen diversity influence honey bee colony health?. Spanish Journal of Agricultural Research, 2019, 17, e0504.                                                                                                                        | 0.6 | 3         |
| 188 | Quantitative Risk Assessment of African Swine Fever Introduction into Spain by Legal Import of Live<br>Pigs. Pathogens, 2022, 11, 76.                                                                                                       | 2.8 | 3         |
| 189 | Spatio-temporal model of avian influenza spread risk. Procedia Environmental Sciences, 2011, 7, 104-109.                                                                                                                                    | 1.4 | 2         |
| 190 | Comparative Assessment of Analytical Approaches to Quantify the Risk for Introduction of Rare<br>Animal Diseases: The Example of Avian Influenza in Spain. Risk Analysis, 2012, 32, 1433-1440.                                              | 2.7 | 2         |
| 191 | Development and evaluation of a new lateral flow assay for simultaneous detection of antibodies against African Horse Sickness and Equine Infectious Anemia viruses. Journal of Virological Methods, 2016, 237, 127-131.                    | 2.1 | 2         |
| 192 | Phylogenomic analysis of the complete sequence of a gastroenteritis-associated cetacean adenovirus<br>(bottlenose dolphin adenovirus 1) reveals a high degree of genetic divergence. Infection, Genetics and<br>Evolution, 2017, 53, 47-55. | 2.3 | 2         |
| 193 | A study of the composition of the Obsoletus complex and genetic diversity of Culicoides obsoletus populations in Spain. Parasites and Vectors, 2021, 14, 351.                                                                               | 2.5 | 2         |
| 194 | One World, One Health, One Virology. Veterinary Microbiology, 2013, 165, 1.                                                                                                                                                                 | 1.9 | 1         |
| 195 | Identifying Spanish Areas at More Risk of Monthly BTV Transmission with a Basic Reproduction Number<br>Approach. Viruses, 2020, 12, 1158.                                                                                                   | 3.3 | 1         |