List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of STAT3 signaling pathway in the kidney of COVID-19 patients. Journal of Nephrology, 2022, 35, 735-743.	2.0	10
2	Kidney single-cell transcriptome profile reveals distinct response of proximal tubule cells to SGLT2i and ARB treatment in diabetic mice. Molecular Therapy, 2022, 30, 1741-1753.	8.2	17
3	Modulation of transforming growth factor-β-induced kidney fibrosis by leucine-rich âº-2 glycoprotein-1. Kidney International, 2022, 101, 299-314.	5.2	27
4	Digital Spatial Profiling of Individual Glomeruli From Patients With Anti-Neutrophil Cytoplasmic Autoantibody-Associated Glomerulonephritis. Frontiers in Immunology, 2022, 13, 831253.	4.8	9
5	HIPK2 directs cell type–specific regulation of STAT3 transcriptional activity in Th17 cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117112119.	7.1	2
6	Reticulon-1A mediates diabetic kidney disease progression through endoplasmic reticulum-mitochondrial contacts in tubular epithelial cells. Kidney International, 2022, 102, 293-306.	5.2	18
7	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	10.3	67
8	Connectivity Mapping Identifies BI-2536 as a Potential Drug to Treat Diabetic Kidney Disease. Diabetes, 2021, 70, 589-602.	0.6	12
9	Outcomes of Patients on Maintenance Dialysis Hospitalized with COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 452-455.	4.5	25
10	Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney International, 2021, 99, 914-925.	5.2	16
11	Disparate roles of retinoid acid signaling molecules in kidney disease. American Journal of Physiology - Renal Physiology, 2021, 320, F683-F692.	2.7	23
12	Predictive Approaches for Acute Dialysis Requirement and Death in COVID-19. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1158-1168.	4.5	15
13	Peroxisomal L-bifunctional Protein Deficiency Causes Male-specific Kidney Hypertrophy and Proximal Tubular Injury in Mice. Kidney360, 2021, 2, 1441-1454.	2.1	10
14	Krüppel-like factor 6–mediated loss of BCAA catabolism contributes to kidney injury in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
15	Perirenal Fat Thickness Is Significantly Associated With the Risk for Development of Chronic Kidney Disease in Patients With Diabetes. Diabetes, 2021, 70, 2322-2332.	0.6	27
16	A Novel Mechanism of Regulation for Exosome Secretion in the Diabetic Kidney. Diabetes, 2021, 70, 1440-1442.	0.6	4
17	Global transcriptomic changes in glomerular endothelial cells in mice with podocyte depletion and glomerulosclerosis. Cell Death and Disease, 2021, 12, 687.	6.3	5
18	Acute Kidney Injury in Patients Hospitalized With COVID-19 in New York City: Temporal Trends From March 2020 to April 2021. Kidney Medicine, 2021, 3, 877-879.	2.0	12

#	Article	IF	CITATIONS
19	Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney International, 2021, 100, 67-78.	5.2	20
20	AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight, 2021, 6, .	5.0	16
21	Inhibition of HIPK2 Alleviates Thoracic Aortic Disease in Mice With Progressively Severe Marfan Syndrome. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2483-2493.	2.4	4
22	Autocrine and paracrine effects of a novel podocyte gene, RARRES1. Kidney International, 2021, 100, 745-747.	5.2	7
23	Tackling Dialysis Burden around the World: A Global Challenge. Kidney Diseases (Basel, Switzerland), 2021, 7, 167-175.	2.5	17
24	Happy gut, happy kidneys? Restoration of gut microbiome ameliorates acute and chronic kidney disease. Cell Metabolism, 2021, 33, 1901-1903.	16.2	6
25	Controversies in Podocyte Loss: Death or Detachment?. Frontiers in Cell and Developmental Biology, 2021, 9, 771931.	3.7	24
26	Role of CD8+ T cells in crescentic glomerulonephritis. Nephrology Dialysis Transplantation, 2020, 35, 564-572.	0.7	21
27	Role of SIRT1 in HIV-associated kidney disease. American Journal of Physiology - Renal Physiology, 2020, 319, F335-F344.	2.7	13
28	Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Diseases (Basel, Switzerland), 2020, 6, 215-225.	2.5	98
29	Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. Journal of Experimental Medicine, 2020, 217, .	8.5	40
30	IL-9: a novel pro-podocyte survival cytokine in FSGS. Kidney International, 2020, 98, 541-543.	5.2	3
31	Derivation and validation of genome-wide polygenic score for urinary tract stone diagnosis. Kidney International, 2020, 98, 1323-1330.	5.2	12
32	Tubular HIPK2 is a key contributor to renal fibrosis. JCI Insight, 2020, 5, .	5.0	14
33	Soluble RARRES1 induces podocyte apoptosis to promote glomerular disease progression. Journal of Clinical Investigation, 2020, 130, 5523-5535.	8.2	37
34	Novel protein synthesis–breakdown complexes: TASCCed with fibrosis after G2-M arrest. Kidney International, 2019, 96, 1056-1058.	5.2	2
35	Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nature Communications, 2019, 10, 4523.	12.8	89
36	Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression. Diabetes, 2019, 68, 2301-2314.	0.6	74

#	Article	IF	CITATIONS
37	MicroRNA-214 promotes chronic kidney disease by disrupting mitochondrial oxidative phosphorylation. Kidney International, 2019, 95, 1389-1404.	5.2	69
38	Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2019, 30, 533-545.	6.1	133
39	Expression of Clutamate Receptor Subtype 3 Is Epigenetically Regulated in Podocytes under Diabetic Conditions. Kidney Diseases (Basel, Switzerland), 2019, 5, 34-42.	2.5	7
40	Increased podocyte Sirtuin-1 function attenuates diabetic kidney injury. Kidney International, 2018, 93, 1330-1343.	5.2	153
41	Telenephrology: Providing Healthcare to Remotely Located Patients with Chronic Kidney Disease. American Journal of Nephrology, 2018, 47, 200-207.	3.1	41
42	Bisphenol A promotes hyperuricemia <i>via</i> activating xanthine oxidase. FASEB Journal, 2018, 32, 1007-1016.	0.5	29
43	Analysis of OPTN/UNOS registry suggests the number of HLA matches and not mismatches is a stronger independent predictor of kidney transplant survival. Kidney International, 2018, 93, 482-490.	5.2	26
44	Transcriptomic analysis uncovers novel synergistic mechanisms in combination therapy for lupus nephritis. Kidney International, 2018, 93, 416-429.	5.2	26
45	SIRT1 Is a Potential Drug Target for Treatment of Diabetic Kidney Disease. Frontiers in Endocrinology, 2018, 9, 624.	3.5	63
46	Epigenetic regulation of RCAN1 expression in kidney disease and its role in podocyte injury. Kidney International, 2018, 94, 1160-1176.	5.2	23
47	Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy ofÂdiabetic mice. Kidney International, 2018, 94, 326-345.	5.2	55
48	Expression of Endothelial Cell Injury Marker Cd146 Correlates with Disease Severity and Predicts the Renal Outcomes in Patients with Diabetic Nephropathy. Cellular Physiology and Biochemistry, 2018, 48, 63-74.	1.6	20
49	Tyro3 is a podocyte protective factor in glomerular disease. JCI Insight, 2018, 3, .	5.0	14
50	A protective role for microRNA-688 in acute kidney injury. Journal of Clinical Investigation, 2018, 128, 5216-5218.	8.2	12
51	Bowman's capsule provides a protective niche for podocytes from cytotoxic CD8+ T cells. Journal of Clinical Investigation, 2018, 128, 3413-3424.	8.2	62
52	Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach. Scientific Reports, 2017, 7, 39487.	3.3	28
53	A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-β1/Smad3 Pathway. Journal of the American Society of Nephrology: JASN, 2017, 28, 2133-2143.	6.1	43
54	The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy. Current Diabetes Reports, 2017, 17, 17.	4.2	74

#	Article	IF	CITATIONS
55	LncRNA HOTAIR regulates HIF-1α/AXL signaling through inhibition of miR-217 in renal cell carcinoma. Cell Death and Disease, 2017, 8, e2772-e2772.	6.3	136
56	Reduction in podocyte SIRT1 accelerates kidney injury in aging mice. American Journal of Physiology - Renal Physiology, 2017, 313, F621-F628.	2.7	69
57	Rtn1a-Mediated Endoplasmic Reticulum Stress in Podocyte Injury and Diabetic Nephropathy. Scientific Reports, 2017, 7, 323.	3.3	37
58	Genomic Analysis of Kidney Allograft Injury Identifies Hematopoietic Cell Kinase as a Key Driver of Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2017, 28, 1385-1393.	6.1	26
59	Puerarin attenuates diabetic kidney injury through the suppression of NOX4 expression in podocytes. Scientific Reports, 2017, 7, 14603.	3.3	40
60	Retinoic acid improves nephrotoxic serum–induced glomerulonephritis through activation of podocyte retinoic acid receptor α. Kidney International, 2017, 92, 1444-1457.	5.2	32
61	Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy. Oncotarget, 2017, 8, 111295-111308.	1.8	19
62	Glucocorticoid-Regulated Kinase: Linking Azotemia and Muscle Wasting in CKD. Journal of the American Society of Nephrology: JASN, 2016, 27, 2545-2547.	6.1	0
63	Role of C/EBP-α in Adriamycin-induced podocyte injury. Scientific Reports, 2016, 6, 33520.	3.3	16
64	Knockdown of RTN1A attenuates ER stress and kidney injury in albumin overload-induced nephropathy. American Journal of Physiology - Renal Physiology, 2016, 310, F409-F415.	2.7	27
65	Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1006-1014.	6.1	37
66	The Beneficial Role of Retinoids in Glomerular Disease. Frontiers in Medicine, 2015, 2, 16.	2.6	41
67	Novel mutations in the inverted formin 2 gene of Chinese families contribute to focal segmental glomerulosclerosis. Kidney International, 2015, 88, 593-604.	5.2	23
68	Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nature Communications, 2015, 6, 6676.	12.8	162
69	Recent Advances in Traditional Chinese Medicine for Kidney Disease. American Journal of Kidney Diseases, 2015, 66, 513-522.	1.9	122
70	Nephrin Preserves Podocyte Viability and Glomerular Structure and Function in Adult Kidneys. Journal of the American Society of Nephrology: JASN, 2015, 26, 2361-2377.	6.1	93
71	An update: the role of Nephrin inside and outside the kidney. Science China Life Sciences, 2015, 58, 649-657.	4.9	24
72	Dendrin Ablation Prolongs Life Span by Delaying Kidney Failure. American Journal of Pathology, 2015, 185, 2143-2157.	3.8	17

JOHN CIJIANG HE

#	Article	lF	CITATIONS
73	Genetics and Epigenetics of Diabetic Nephropathy. Kidney Diseases (Basel, Switzerland), 2015, 1, 42-51.	2.5	24
74	Glomerular endothelial cell injury and cross talk in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2015, 308, F287-F297.	2.7	200
75	Protective Role of PGC-1α in Diabetic Nephropathy Is Associated with the Inhibition of ROS through Mitochondrial Dynamic Remodeling. PLoS ONE, 2015, 10, e0125176.	2.5	76
76	Temporal Profile of the Renal Transcriptome of HIV-1 Transgenic Mice during Disease Progression. PLoS ONE, 2014, 9, e93019.	2.5	10
77	The Role of SIRT1 in Diabetic Kidney Disease. Frontiers in Endocrinology, 2014, 5, 166.	3.5	63
78	Induction of Retinol Dehydrogenase 9 Expression in Podocytes Attenuates Kidney Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1933-1941.	6.1	14
79	Role of Transcription Factor Acetylation in Diabetic Kidney Disease. Diabetes, 2014, 63, 2440-2453.	0.6	171
80	cAMP Signaling Prevents Podocyte Apoptosis via Activation of Protein Kinase A and Mitochondrial Fusion. PLoS ONE, 2014, 9, e92003.	2.5	27
81	Renoprotective Effect of Combined Inhibition of Angiotensin-Converting Enzyme and Histone Deacetylase. Journal of the American Society of Nephrology: JASN, 2013, 24, 801-811.	6.1	46
82	Down-regulation of NF-κB Transcriptional Activity in HIV-associated Kidney Disease by BRD4 Inhibition. Journal of Biological Chemistry, 2012, 287, 28840-28851.	3.4	172
83	3-D Quantitative Microanatomy of Rat Kidney Podocytes as Determined by Serial Block-Face Scanning Electron Microscopy. , 2012, , .		0
84	Systems biology of kidney diseases. Kidney International, 2012, 81, 22-39.	5.2	72
85	Retinoic Acid Inhibits HIV-1–Induced Podocyte Proliferation through the cAMP Pathway. Journal of the American Society of Nephrology: JASN, 2007, 18, 93-102.	6.1	85
86	Role of the Go/i signaling network in the regulation of neurite outgrowthThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference Canadian Journal of Physiology and Pharmacology, 2006, 84, 687-694.	1.4	61
87	The Gαo/i-coupled Cannabinoid Receptor-mediated Neurite Outgrowth Involves Rap Regulation of Src and Stat3. Journal of Biological Chemistry, 2005, 280, 33426-33434.	3.4	102
88	Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1,2 pathways. Journal of Clinical Investigation, 2004, 114, 643-651.	8.2	100