Bin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114343/publications.pdf

Version: 2024-02-01

147801 197818 2,925 112 31 49 citations h-index g-index papers 112 112 112 4348 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Ternary polymerization strategy to approach 12% efficiency in all-polymer solar cells processed by green solvent and additive. Chemical Engineering Journal, 2022, 429, 132407.	12.7	15
2	Improved photovoltaic properties of copolymer donors by regulating alkyl and alkylsilyl side chains. Dyes and Pigments, 2022, 197, 109842.	3.7	2
3	Rhodium(<scp>iii</scp>)-catalyzed successive C(sp ²)â€"H and C(sp ²)â€"C(sp ²) bond activation of aryl oximes: synthetic and mechanistic studies. Organic Chemistry Frontiers, 2022, 9, 822-830.	4.5	5
4	An asymmetric small-molecule donor enables over 18% efficiency in ternary organic solar cells. Journal of Materials Chemistry A, 2022, 10, 9746-9752.	10.3	27
5	Organic solar cells with efficiency of 17.6% and fill factor of 78.3% based on perylene-diimide derivative as cathode interface layer. Chemical Engineering Journal, 2022, 443, 136455.	12.7	24
6	Polymerized Naphthalimide Derivatives as Remarkable Electronâ€Transport Layers for Inverted Organic Solar Cells. Macromolecular Rapid Communications, 2022, 43, e2200119.	3.9	5
7	Preventing isomerization of the fused-ring core by introducing a methyl group for efficient non-fullerene acceptors. Journal of Materials Chemistry C, 2021, 9, 13357-13365.	5 . 5	3
8	Non-conjugated electrolytes as thickness-insensitive interfacial layers for high-performance organic solar cells. Journal of Materials Chemistry A, 2021, 9, 22926-22933.	10.3	9
9	Synthesis and Optoelectronic Properties of A-D-A Type Small Molecule Acceptors Containing Isatin-Fused Acenaphthenequinone Imide Terminal Groups. Chinese Journal of Organic Chemistry, 2021, , 2019.	1.3	1
10	Simultaneously Enhancing the <i>J</i> _{sc} and <i>V</i> _{oc} of Ternary Organic Solar Cells by Incorporating a Medium-Band-Gap Acceptor. ACS Applied Energy Materials, 2021, 4, 3480-3486.	5.1	19
11	Developing <i>>s</i> -Tetrazine-Based Terpolymer for High-Performance Polymer Solar Cells by Tuning Side Chains. ACS Applied Energy Materials, 2021, 4, 11624-11633.	5.1	8
12	Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. Journal of Materials Chemistry A, 2021, 9, 11734-11740.	10.3	38
13	Non-conjugated polymers as thickness-insensitive electron transport materials in high-performance inverted organic solar cells. Journal of Energy Chemistry, 2020, 47, 196-202.	12.9	32
14	Effects of monohalogenated terminal units of non-fullerene acceptors on molecular aggregation and photovoltaic performance. Solar Energy, 2020, 208, 866-872.	6.1	15
15	Improved photovoltaic properties of PM6-based terpolymer donors containing benzothiadiazole with a siloxane-terminated side chain. Polymer Chemistry, 2020, 11, 6178-6186.	3.9	19
16	Cationic Polyelectrolytes with Alkylsulfonate Counterions as a Cathode Interface Layer for High-Performance Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44679-44688.	8.0	15
17	A2-D-A1-D-A2-type small molecule acceptors incorporated with electron-deficient core for non-fullerene organic solar cells. Solar Energy, 2020, 197, 511-518.	6.1	18
18	Simultaneously improving the photovoltaic parameters of organic solar cells <i>via</i> isomerization of benzo[<i>b</i>]benzo[4,5]thieno[2,3- <i>d</i>]thiophene-based octacyclic non-fullerene acceptors. Journal of Materials Chemistry A, 2020, 8, 9684-9692.	10.3	28

#	Article	IF	CITATIONS
19	Improved photovoltaic performance of D-A1-D-A2 terpolymer via synergetic effects of copolymerization and blending. Dyes and Pigments, 2019, 160, 79-85.	3.7	9
20	Development of s-tetrazine-based polymers for efficient polymer solar cells by controlling appropriate molecular aggregation. Dyes and Pigments, 2019, 171, 107717.	3.7	11
21	Benzothienoisoindigo-based polymers for efficient polymer solar cells with an open-circuit voltage of 0.96â€V. Polymer, 2019, 175, 339-346.	3.8	5
22	Alkynyl-Functionalized Pyrene-Cored Perylene Diimide Electron Acceptors for Efficient Nonfullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 3918-3926.	5.1	29
23	Rational design of truxene-bridged PDI trimers as acceptors for efficient organic solar cells. Dyes and Pigments, 2018, 156, 276-284.	3.7	17
24	Synthesis and Photovoltaic Properties of the Copolymers Based on Carbazole with Tetrathiophene Porphyrin Side Chains Linked by a Flexible Alkylâ€interval. Chinese Journal of Chemistry, 2018, 36, 599-604.	4.9	5
25	Synergistic Effect of Fluorine Substitution and Thio-Alkylation on Photovoltaic Performances of Alternating Conjugated Polymers Based on Alkylthio-Substituted Benzothiadiazole-Quaterthiophene. ACS Applied Energy Materials, 2018, 1, 2192-2199.	5.1	14
26	Two A2-D-A1-D-A2 small molecules with isoindigo as the central core for efficient organic photovoltaics. Dyes and Pigments, 2018, 156, 403-409.	3.7	6
27	Polymer with a 3D conductive network: a thickness-insensitive electron transport layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 12969-12973.	10.3	25
28	An axisymmetric heptacyclic lactam unit for efficient polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 6911-6915.	5 . 5	7
29	Regular terpolymers with benzothiadiazole side groups for improving the performances of polymer solar cells. Dyes and Pigments, 2017, 143, 261-269.	3.7	6
30	Polymer with conjugated alkylthiophenylthienyl side chains for efficient photovoltaic cells. Organic Electronics, 2017, 48, 298-307.	2.6	5
31	A trilobal non-fullerene electron acceptor based on benzo[1,2- b :3,4- b $\hat{a}\in^2$:5,6- b $\hat{a}\in^3$] trithiophene and perylenediimide for polymer solar cells. Synthetic Metals, 2017, 227, 122-130.	3.9	12
32	Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 7300-7304.	10.3	12
33	The effect of the length of alkyl side-chains on the molecular aggregation and photovoltaic performance of the isoindigo-based polymers. Dyes and Pigments, 2017, 139, 403-411.	3.7	12
34	Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polymer Chemistry, 2017, 8, 5795-5802.	3.9	47
35	Design and synthesis of the polymers based on alkylthiophenyl side chains and variant acceptor moieties for polymer solar cells. RSC Advances, 2016, 6, 95306-95313.	3.6	4
36	Improved photovoltaic properties of the copolymers based on diketopyrrolopyrrole with broad absorption and high open-circuit voltage. Dyes and Pigments, 2016, 133, 16-24.	3.7	6

#	Article	IF	CITATIONS
37	Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production. Scientific Reports, 2016, 5, 17703.	3.3	6
38	Tuning the photovoltaic performances of the terpolymers based on thiopheneâ€benzeneâ€thiophene via the modification of alkyl side chains. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
39	Effects of spin-coating speed on the morphology and photovoltaic performance of the diketopyrrolopyrrole-based terpolymer. Science China Chemistry, 2016, 59, 466-471.	8.2	2
40	Controlling the morphology and hole mobility of terpolymers for polymer solar cells. RSC Advances, 2016, 6, 13177-13184.	3.6	15
41	Effect of conjugated side groups on the photovoltaic performances of triphenylamine-based dyes sensitized solar cells. Dyes and Pigments, 2016, 124, 222-231.	3.7	15
42	Novel solution-processible small molecules based on benzo[1,2-b:3,4-b′:5,6-b′′]trithiophene for effective organic photovoltaics with high open-circuit voltage. RSC Advances, 2015, 5, 14540-14546.	3.6	11
43	Synthesis, characterization, and photovoltaic performance of the polymers based on thiophene-2,5-bis((2-ethylhexyl)oxy) benzene-thiophene. Organic Electronics, 2015, 20, 142-149.	2.6	22
44	Transient Rechargeable Batteries Triggered by Cascade Reactions. Nano Letters, 2015, 15, 4664-4671.	9.1	77
45	2-Ethynyl-6-methylthieno[3,2- b]thiophene as an efficient π spacer for porphyrin-based dyes. Dyes and Pigments, 2015, 122, 168-176.	3.7	7
46	Synthesis and photovoltaic properties of the acceptor pended push–pull conjugated polymers incorporating thieno[3,2–b] thiophene in the backbone chain or side chains. Dyes and Pigments, 2015, 120, 44-51.	3.7	14
47	Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. Advanced Functional Materials, 2015, 25, 2920-2927.	14.9	150
48	A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative. Journal of Materials Chemistry A, 2015, 3, 6929-6934.	10.3	14
49	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23291-23296.	8.0	123
50	Flexible counter electrodes based on nitrogen-doped carbon aerogels with tunable pore structure for high-performance dye-sensitized solar cells. Carbon, 2014, 77, 113-121.	10.3	33
51	Effects of the acceptors in triphenylamine-based D–A′–π–A dyes on photophysical, electrochemical, and photovoltaic properties. Journal of Power Sources, 2014, 246, 831-839.	7.8	37
52	Synthesis and photovoltaic properties of conjugated copolymers with benzo[1,2-b:4,5-b′]dithiophene and thiadiazolo[3,4-c]pyridine moieties. European Polymer Journal, 2013, 49, 2738-2747.	5.4	11
53	Inverted polymer solar cells with TiO2 electron extraction layers prepared by magnetron sputtering. Science China Chemistry, 2013, 56, 1573-1577.	8.2	12
54	Synthesis and photovoltaic properties of the polymers base on thiophene derivatives with electron-deficient 3-nitro-1,2,4-triazole side chains. Thin Solid Films, 2013, 539, 267-273.	1.8	0

#	Article	IF	CITATIONS
55	Synthesis and photovoltaic properties of new branchlike organic dyes containing benzothiadiazole or triphenylamine-linked consecutive vinylenes units. Dyes and Pigments, 2013, 97, 405-411.	3.7	5
56	Synthesis and photovoltaic properties of organic small molecules containing triphenylamine and benzothiadiazole moieties with different terminal groups. Dyes and Pigments, 2013, 98, 464-470.	3.7	8
57	Enhanced power conversion efficiencies in bulk heterojunction solar cells based on conjugated polymer with isoindigo side chain. Chemical Communications, 2013, 49, 3857.	4.1	43
58	Bandgap and Molecularâ€Energyâ€Level Control of Conjugatedâ€Polymer Photovoltaic Materials Based on 6,12â€Dihydroâ€diindeno[1,2â€ <i>b</i> ;10,20â€ <i>e</i>]pyrazine. Macromolecular Chemistry and Physics, 2013 214, 1147-1157.	3,2.2	9
59	Synthesis and photovoltaic properties of phthalocyanine end-capped copolymers with conjugated dithienylbenzothiadiazole–vinylene side chains. European Polymer Journal, 2012, 48, 1805-1813.	5. 4	7
60	EFFICIENT TiO ₂ NANOPARTICLES/NANORODS COMPOSITE ELECTRODES FOR DYE-SENSITIZED SOLAR CELLS. Nano, 2012, 07, 1250010.	1.0	5
61	Synthesis and photovoltaic performances of conjugated copolymers with 4,7-dithien-5-yl-2,1,3-benzothiadiazole and di(p-tolyl)phenylamine side groups. Journal of Materials Chemistry, 2012, 22, 22913.	6.7	26
62	Development of a new diindenopyrazine–benzotriazole copolymer for multifunctional application in organic field-effect transistors, polymer solar cells and light-emitting diodes. Organic Electronics, 2012, 13, 1671-1679.	2.6	21
63	Synthesis and Photovoltaic Properties of Copolymers Based on Benzo[1,2-b:4,5-b′]dithiophene and Thiophene with Different Conjugated Side Groups. Macromolecules, 2012, 45, 2359-2366.	4.8	48
64	Benzodifuranâ€containing wellâ€defined Ï€â€conjugated polymers for photovoltaic cells. Journal of Polymer Science Part A, 2012, 50, 2935-2943.	2.3	29
65	Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chemical Communications, 2012, 48, 8078.	4.1	105
66	Phenylenevinylene copolymers of dihexylthienylbenzothiadiazole and triphenylamine or tetraphenylbenzidine: synthesis, characterization and photovoltaic properties. Journal of Materials Science, 2012, 47, 5706-5714.	3.7	4
67	Synthesis of new N, N-diphenylhydrazone dyes for solar cells: Effects of thiophene-derived π-conjugated bridge. Dyes and Pigments, 2012, 92, 1042-1051.	3.7	34
68	Porphyrins modified with a low-band-gap chromophore for dye-sensitized solar cells. Organic Electronics, 2012, 13, 560-569.	2.6	33
69	Preparation of Polymer/TiO ₂ Hybrid Nanofibers Microporous Membranes and Its Application in Dye-Sensitized Solar Cells. Acta Chimica Sinica, 2012, 70, 1604.	1.4	7
70	Synthesis and Photovoltaic Properties of Conjugated Polymers Based on 1,2,4-Triazole Derivatives. Acta Chimica Sinica, 2012, 70, 2433.	1.4	2
71	Development of a new benzo(1,2-b:4,5-b′)dithiophene-based copolymer with conjugated dithienylbenzothiadiazole–vinylene side chains for efficient solar cells. Chemical Communications, 2011, 47, 9381.	4.1	65
72	Flexible Counter Electrodes Based on Mesoporous Carbon Aerogel for High-Performance Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 22615-22621.	3.1	61

#	Article	IF	Citations
73	Effects of aromatic ï∈-conjugated bridges on optical and photovoltaic properties of N,N-diphenylhydrazone-based metal-free organic dyes. Organic Electronics, 2011, 12, 1992-2002.	2.6	57
74	Synthesis and photovoltaic properties of a phenylenevinylene copolymer with dithienylbenzothiadiazole and bis(di(p-tolyl)phenylamino)phenylene units. European Polymer Journal, 2011, 47, 2424-2431.	5.4	3
75	Low bandgap isoindigo-based copolymers: design, synthesis and photovoltaic applications. Polymer Chemistry, 2011, 2, 1156-1162.	3.9	66
76	Low-cost quasi-solid-state dye-sensitized solar cells based on a metal-free organic dye and a carbon aerogel counter electrode. Journal of Materials Science, 2011, 46, 7482-7488.	3.7	11
77	Synthesis and characterization of trivalent metal porphyrin with NCS ligand for application in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1174-1181.	6.2	22
78	Low band gap copolymers consisting of porphyrins, thiophenes, and 2,1,3â€benzothiadiazole moieties for bulk heterojunction solar cells. Journal of Polymer Science Part A, 2011, 49, 2685-2692.	2.3	46
79	Synthesis and photovoltaic properties of copolymers based on benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> :倲]dithiophene and thiophene with electronâ€withdrawing side chains. Journal of Polymer Science Part A, 2011, 49, 3604-3614.	2.3	19
80	Synthesis, characterization, and photophysical properties of novel poly(⟨i⟩p⟨ i⟩â€phenylene vinylene) derivatives with conjugated thiophene as side chains. Journal of Applied Polymer Science, 2011, 120, 3387-3394.	2.6	8
81	The structural modification of thiophene-linked porphyrin sensitizers for dye-sensitized solar cells. Dyes and Pigments, 2011, 88, 75-83.	3.7	41
82	Multi-alkylthienyl appended porphyrins for efficient dye-sensitized solar cells. Dyes and Pigments, 2011, 91, 404-412.	3.7	40
83	Efficient triphenylamine-based dyes featuring dual-role carbazole, fluorene and spirobifluorene moieties. Organic Electronics, 2011, 12, 125-135.	2.6	65
84	Synthesis and photovoltaic performance of dye-sensitizers based on thiophene-triphenylamine with varied substituents. Scientia Sinica Chimica, 2011, 41, 982-988.	0.4	2
85	Synthesis and photovoltaic performances of 2,5-dioctyloxy-1,4-phenylenevinylene and terthiophene copolymers with di(p-tolyl)phenylamine and oxadiazole side groups. European Polymer Journal, 2010, 46, 673-680.	5.4	12
86	Hyperbranched conjugated polymers with donor-ï€-acceptor architecture as organic sensitizers for dye-sensitized solar cells. European Polymer Journal, 2010, 46, 2033-2041.	5.4	29
87	Stainless steel mesh-based flexible quasi-solid dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2010, 94, 1005-1010.	6.2	51
88	Low-cost dyes based on methylthiophene for high-performance dye-sensitized solar cells. Dyes and Pigments, 2010, 87, 181-187.	3.7	51
89	Synthesis and characterization of porphyrin-terthiophene and oligothiophene π-conjugated copolymers for polymer solar cells. European Polymer Journal, 2010, 46, 1084-1092.	5.4	56
90	High Molar Extinction Coefficient Branchlike Organic Dyes Containing Di(<i>p</i> -tolyl)phenylamine Donor for Dye-Sensitized Solar Cells Applications. Journal of Physical Chemistry C, 2010, 114, 3280-3286.	3.1	110

#	Article	IF	CITATIONS
91	Poly(p-phenylenevinylene) derivatives with conjugated thiophene side chains: Synthesis, photophysics and photovoltaics. Synthetic Metals, 2010, 160, 1291-1298.	3.9	7
92	Synthesis and photovoltaic properties of polythiophene stars with porphyrin core. Journal of Materials Chemistry, 2010, 20, 1140-1146.	6.7	56
93	Benzodifuran-Based π-Conjugated Copolymers for Bulk Heterojunction Solar Cells. Macromolecules, 2010, 43, 8058-8062.	4.8	51
94	SYNTHESIS AND ELECTROLUMINESCENT PROPERTIES OF A POLYFLUORENE GRAFTED OLIGO (PHENYLENEVINYLENE DERIVATIVE WITH TWO TRIPHENYLAMINE SIDE GROUP). Acta Polymerica Sinica, 2010, 010, 501-507.	0.0	2
95	Molecular design of organic dyes based on vinylene hexylthiophene bridge for dye-sensitized solar cells. Science in China Series B: Chemistry, 2009, 52, 1198-1209.	0.8	13
96	Synthesis and optoelectronic properties of liquidâ€crystalline copolymers based on fluorene and triphenylamineâ€containing oligo(<i>p</i> â€phenylenevinylene) derivatives for white light emission. Journal of Polymer Science Part A, 2009, 47, 3296-3308.	2.3	14
97	Synthesis and white electroluminescent properties of multicomponent copolymers containing polyfluorene, oligo(phenylenevinylene), and porphyrin derivatives. Journal of Polymer Science Part A, 2009, 47, 5291-5303.	2.3	9
98	Synthesis and photovoltaic properties of poly(p-phenylenevinylene) derivatives with two triphenylamine and bithiophene conjugated side chains. European Polymer Journal, 2009, 45, 2726-2731.	5.4	13
99	Efficient triphenylamine dyes for solar cells: Effects of alkyl-substituents and π-conjugated thiophene unit. Dyes and Pigments, 2009, 83, 187-197.	3.7	118
100	Effect of oxadiazole side chains based on alternating fluorene–thiophene copolymers for photovoltaic cells. European Polymer Journal, 2009, 45, 2079-2086.	5 . 4	36
101	Synergetic Effect of Efficient Energy Transfer and 3D Ï€â^'Ï€ Stack for White Emission Based on the Block Copolymers Containing Nonconjugated Spacer. Journal of Physical Chemistry B, 2009, 113, 4203-4208.	2.6	10
102	Thiophene-linked porphyrin derivatives for dye-sensitized solar cells. Chemical Communications, 2009, , 2499.	4.1	97
103	Poly[<i>N</i> -isopropylacrylamide- <i>co</i> -3-(trimethoxysilyl)-propylmethacrylate] Coated Aqueous Dispersed Thermosensitive Fe ₃ O ₄ Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 10090-10096.	3.1	48
104	Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sensors and Actuators B: Chemical, 2008, 132, 60-66.	7.8	29
105	The sensibility of the composites fabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors. Composites Science and Technology, 2008, 68, 1357-1362.	7.8	28
106	Two novel triphenylamine-substituted poly(p-phenylenevinylene) derivatives: synthesis, photo- and electroluminescent properties. European Polymer Journal, 2008, 44, 2348-2355.	5.4	11
107	Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen. Materials Letters, 2008, 62, 2419-2421.	2.6	22
108	Effect of 3D Ï€â^'Ï€ Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules, 2008, 41, 5716-5722.	4.8	62

#	Article	IF	CITATION
109	Analysis of gas sensing behaviors of carbon black/waterborne polyurethane composites in low concentration organic vapors. Journal of Materials Science, 2007, 42, 4575-4580.	3.7	10
110	Effect of Soft Segments of Waterborne Polyurethane on Organic Vapor Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites. Polymer Journal, 2006, 38, 799-806.	2.7	12
111	Synthesis and electroluminescent properties of substituted benzoate bis (8-hydroxyquinaldine) gallium (III) complexes. Journal of Materials Science, 2004, 39, 1405-1406.	3.7	6
112	Study on copolymerization behavior of 2-substituted 4-methylene-1,3-dioxolane with maleic anhydride and acrylonitrile. Journal of Polymer Science Part A, 1996, 34, 2149-2156.	2.3	4