List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3114186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of Short and Long Einsteinian Physics Intervention Programmes in Middle School. Research in Science Education, 2022, 52, 305-324.	2.3	5
2	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	5.1	32
3	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	4.5	15
4	Acoustic and vibration isolation for a gravity gradiometer. Review of Scientific Instruments, 2022, 93, 064502.	1.3	1
5	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	4.5	33
6	Gravitational wave detectors with broadband high frequency sensitivity. Communications Physics, 2021, 4, .	5.3	26
7	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
8	All possible paths: bringing quantum electrodynamics to classrooms. European Journal of Physics, 2021, 42, 035408.	0.6	1
9	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	8.3	514
10	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	8.3	453
11	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	7.8	87
12	Long-term impact of a primary school intervention on aspects of Einsteinian physics. Physics Education, 2021, 56, 055031.	0.5	5
13	Revealing optical loss from modal frequency degeneracy in a long optical cavity. Optics Express, 2021, 29, 23902.	3.4	2
14	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	4.5	20
15	Cat-flap micro-pendulum for low noise optomechanics. Journal Physics D: Applied Physics, 2021, 54, 035104.	2.8	1
16	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	4.5	59
17	Determining the Intelligibility of Einsteinian Concepts with Middle School Students. Research in Science Education, 2020, 50, 2505-2532.	2.3	18
18	Gravity and warped time—clarifying conceptual confusions in general relativity. Physics Education, 2020, 55, 015023.	0.5	11

#	Article	IF	CITATIONS
19	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
20	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	4.5	12
21	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> stretchy="false">劙</mml:mtext></mml:mrow>. Physical Review</mml:math 	nl m text:	⊳≺ nສສ໔ msub:
22	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	8.3	1,090
23	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	8.3	1,049
24	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	4.0	109
25	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	4.0	188
26	Designing arm cavities free of parametric instability for gravitational wave detectors. Classical and Quantum Gravity, 2020, 37, 075015.	4.0	1
27	Rotational isolation with neutrally buoyant suspension. Review of Scientific Instruments, 2020, 91, 054502.	1.3	1
28	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	8.3	406
29	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	8.3	65
30	Double end-mirror sloshing cavity for optical dilution of thermal noise in mechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1643.	2.1	1
31	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	4.5	88
32	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	7.8	370
33	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	4.5	72
34	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	7.8	119
35	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	8.3	566
36	Characterization of a self-damped pendulum for vibration isolation. Review of Scientific Instruments, 2019, 90, 065103.	1.3	0

#	Article	IF	CITATIONS
37	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	4.5	30
38	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	4.5	61
39	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	4.5	97
40	First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814. Astrophysical Journal Letters, 2019, 876, L7.	8.3	179
41	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	4.5	71
42	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	4.5	26
43	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Mode– <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817. Physical Review Letters, 2019, 122, 061104.</mml:math 	7.8	36
44	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	4.5	29
45	Public and teacher response to Einsteinian physics in schools. Physics Education, 2019, 54, 015001.	0.5	14
46	Einsteinian Physics in the Classroom: Integrating Physical and Digital Learning Resources in the Context of an International Research Collaboration. The Physics Educator, 2019, 01, 1950016.	0.4	14
47	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	4.0	94
48	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	7.8	166
49	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	4.0	18
50	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	7.8	68
51	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
52	Ultra-low dissipation resonators for improving the sensitivity of gravitational wave detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2174-2180.	2.1	6
53	Angular instability in high optical power suspended cavities. Review of Scientific Instruments, 2018, 89, 124503.	1.3	3
54	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	7.8	77

#	Article	IF	CITATIONS
55	Can a short intervention focused on gravitational waves and quantum physics improve students' understanding and attitude?. Physics Education, 2018, 53, 065020.	0.5	14
56	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	7.8	1,473
57	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	7.8	85
58	Suppression of thermal transients in advanced LIGO interferometers using CO ₂ laser preheating. Classical and Quantum Gravity, 2018, 35, 115006.	4.0	3
59	The Asia-Australia Gravitational Wave Detector Concept. , 2018, , .		0
60	A New Global Array of Optical Telescopes: The Falcon Telescope Network. Publications of the Astronomical Society of the Pacific, 2018, 130, 095003.	3.1	11
61	Modular suspension system with low acoustic coupling to the suspended test mass in a prototype gravitational wave detector. Review of Scientific Instruments, 2018, 89, 074501.	1.3	4
62	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
63	Low-frequency rotational isolator for airborne exploration. Geophysics, 2017, 82, E27-E30.	2.6	3
64	Exploring the sensitivity of next generation gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 044001.	4.0	735
65	The Data Analysis in Gravitational Wave Detection. Chinese Astronomy and Astrophysics, 2017, 41, 1-31.	0.3	0
66	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
67	Preventing transient parametric instabilities in high power gravitational wave detectors using thermal transient compensation. Classical and Quantum Gravity, 2017, 34, 145014.	4.0	2
68	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
69	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
70	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
71	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
72	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600

#	Article	IF	CITATIONS
73	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
74	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	7.8	6,413
75	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
76	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
77	Teaching Einsteinian physics at schools: part 3, review of research outcomes. Physics Education, 2017, 52, 065014.	0.5	19
78	Teaching Einsteinian physics at schools: part 2, models and analogies for quantum physics. Physics Education, 2017, 52, 065013.	0.5	16
79	Teaching Einsteinian physics at schools: part 1, models and analogies for relativity. Physics Education, 2017, 52, 065012.	0.5	30
80	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
81	First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO. Physical Review Letters, 2017, 118, 151102.	7.8	24
82	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	8.3	189
83	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	8.3	156
84	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
85	Why did the apple fall? A new model to explain Einstein's gravity. European Journal of Physics, 2017, 38, 015603.	0.6	18
86	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	8.3	73
87	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
88	Study of parametric instability in gravitational wave detectors with silicon test masses. Classical and Quantum Gravity, 2017, 34, 055006.	4.0	4
89	Thermal modulation for suppression of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2017, 34, 135001.	4.0	1
90	First direct detection of gravitational waves. National Science Review, 2017, 4, 681-682.	9.5	1

#	Article	IF	CITATIONS
91	Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104.	2.8	9
92	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
93	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	7.7	63
94	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	8.3	230
95	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	8.3	210
96	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
97	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	4.7	315
98	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	7.8	269
99	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	7.8	466
100	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
101	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	7.8	1,224
102	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	7.8	673
103	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
104	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	8.3	633
105	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	7.8	8,753
106	Parametric instability in long optical cavities and suppression by dynamic transverse mode frequency modulation. Physical Review D, 2015, 91, .	4.7	20
107	Gravitational wave astronomy: the current status. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	26
108	The development of ground based gravitational wave astronomy and opportunities for Australia–China collaboration. International Journal of Modern Physics A, 2015, 30, 1545019.	1.5	0

#	Article	IF	CITATIONS
109	The next detectors for gravitational wave astronomy. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	23
110	Extraction of energy from gravitational waves by laser interferometer detectors. Classical and Quantum Gravity, 2015, 32, 015003.	4.0	2
111	Observation of Parametric Instability in Advanced LIGO. Physical Review Letters, 2015, 114, 161102.	7.8	87
112	Linear negative dispersion with a gain doublet via optomechanical interactions. Optics Letters, 2015, 40, 2337.	3.3	8
113	Time evolution of parametric instability in large-scale gravitational-wave interferometers. Physical Review D, 2014, 90, .	4.7	9
114	Three mode interactions as a precision monitoring tool for advanced laser interferometers. Classical and Quantum Gravity, 2014, 31, 185003.	4.0	3
115	Narrowing the Filter-Cavity Bandwidth in Gravitational-Wave Detectors via Optomechanical Interaction. Physical Review Letters, 2014, 113, 151102.	7.8	51
116	Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators. Applied Optics, 2014, 53, 841.	1.8	3
117	Three mode interaction noise in laser interferometer gravitational wave detectors. Classical and Quantum Gravity, 2014, 31, 145002.	4.0	3
118	An Exploratory Study to Investigate the Impact of an Enrichment Program on Aspects of Einsteinian Physics on Year 6 Students. Research in Science Education, 2014, 44, 363-388.	2.3	25
119	Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Physical Review A, 2014, 89, .	2.5	16
120	Education and public outreach on gravitational-wave astronomy. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
121	Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1970-1973.	2.1	9
122	Spectroscopy of thermally excited acoustic modes using three-mode opto-acoustic interactions in a thermally tuned Fabry–Pérot cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2702-2708.	2.1	6
123	On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers. Monthly Notices of the Royal Astronomical Society, 2013, 431, 882-899.	4.4	91
124	High performance rotational vibration isolator. Review of Scientific Instruments, 2013, 84, 105111.	1.3	7
125	High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers. Journal of Applied Physics, 2013, 114, .	2.5	6
126	GPU-accelerated low-latency real-time searches for gravitational waves from compact binary coalescence. Classical and Quantum Gravity, 2012, 29, 235018.	4.0	16

#	Article	IF	CITATIONS
127	Summed parallel infinite impulse response filters for low-latency detection of chirping gravitational waves. Physical Review D, 2012, 86, .	4.7	53
128	Novel Euler-LaCoste linkage as a very low frequency vertical vibration isolator. Review of Scientific Instruments, 2012, 83, 085108.	1.3	6
129	Cryogenic interferometers. , 2012, , 261-276.		2
130	Thermal tuning the optical cavity for 3 mode interaction studies using a <i>CO</i> ₂ laser. Journal of Physics: Conference Series, 2012, 363, 012018.	0.4	4
131	Progress on the Low-Latency Inspiral Gravitational Wave Detection algorithm known as SPIIR. Journal of Physics: Conference Series, 2012, 363, 012027.	0.4	2
132	Scientific Benefit of Enlarging Gravitational Wave Detector Networks. Journal of Physics: Conference Series, 2012, 363, 012023.	0.4	3
133	Rayleigh scattering in fused silica samples for gravitational wave detectors. Optics Communications, 2011, 284, 4732-4737.	2.1	5
134	THE AIGO PROJECT. International Journal of Modern Physics D, 2011, 20, 2087-2092.	2.1	3
135	NOISE PERFORMANCE OF A 72 m SUSPENDED FABRY–PÉROT CAVITY. International Journal of Modern Physics D, 2011, 20, 2063-2067.	2.1	0
136	CONTROLLING INSTABILITIES IN HIGH OPTICAL POWER INTERFEROMETERS. International Journal of Modern Physics D, 2011, 20, 2069-2074.	2.1	1
137	Study of three-mode parametric instability. Journal of Physics: Conference Series, 2010, 228, 012025.	0.4	1
138	The Zadko Telescope: A Southern Hemisphere Telescope for Optical Transient Searches, Multi-Messenger Astronomy and Education. Publications of the Astronomical Society of Australia, 2010, 27, 331-339.	3.4	23
139	Three-mode opto-acoustic interactions in optical cavities: introducing the three-mode opto-acoustic parametric amplifier. Proceedings of SPIE, 2010, , .	0.8	1
140	Accelerated Searches of Gravitational Waves Using Graphics Processing Units. , 2010, , .		0
141	Low-Latency Detection of Gravitational Waves. , 2010, , .		3
142	Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3705-3709.	2.1	4
143	Pulsar magnetic alignment and the pulsewidth-age relation. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1317-1329.	4.4	49
144	Enhancement and suppression of opto-acoustic parametric interactions using optical feedback. Physical Review A, 2010, 81, .	2.5	8

#	Article	IF	CITATIONS
145	Opto-acoustic interactions in gravitational wave detectors: Comparing flat-top beams with Gaussian beams. Physical Review D, 2010, 81, .	4.7	10
146	Application of graphics processing units to search pipelines for gravitational waves from coalescing binaries of compact objects. Classical and Quantum Gravity, 2010, 27, 135009.	4.0	10
147	Parametric instabilities in advanced gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 205019.	4.0	28
148	Testing the suppression of opto-acoustic parametric interactions using optical feedback control. Classical and Quantum Gravity, 2010, 27, 084028.	4.0	9
149	AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors. Classical and Quantum Gravity, 2010, 27, 084005.	4.0	20
150	Observation of optical torsional stiffness in a high optical power cavity. Applied Physics Letters, 2009, 94, 081105.	3.3	7
151	Compact vibration isolation and suspension for Australian International Gravitational Observatory: Local control system. Review of Scientific Instruments, 2009, 80, 114502.	1.3	11
152	Optimizing a direct string magnetic gradiometer for geophysical exploration. Review of Scientific Instruments, 2009, 80, 104705.	1.3	9
153	Scattering in sapphire test masses for gravitational wave detectors. Journal of Optics, 2009, 11, 125205.	1.5	1
154	Low magnetic susceptibility materials and applications in magnetic gradiometry. Smart Materials and Structures, 2009, 18, 095038.	3.5	6
155	Suppression of parametric instabilities in future gravitational wave detectors using damping rings. Classical and Quantum Gravity, 2009, 26, 135012.	4.0	25
156	Strategies for the control of parametric instability in advanced gravitational wave detectors. Classical and Quantum Gravity, 2009, 26, 015002.	4.0	21
157	Gravitational astronomy 101. Nature, 2009, 457, 122-122.	27.8	0
158	Are GRB optical afterglows relatively brighter at high <i>z</i> ?. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 399, L108-L112.	3.3	4
159	Differential readout for a magnetic gradiometer. Sensors and Actuators A: Physical, 2009, 153, 5-12.	4.1	1
160	Optical design of the proposed Australian International Gravitational Observatory. Optics Express, 2009, 17, 2149.	3.4	4
161	Direct measurement of absorption-induced wavefront distortion in high optical power systems. Applied Optics, 2009, 48, 355.	2.1	14
162	Quantum ground-state cooling and tripartite entanglement with three-mode optoacoustic interactions. Physical Review A, 2009, 79, .	2.5	24

#	Article	IF	CITATIONS
163	Compact vibration isolation and suspension for Australian International Gravitational Observatory: Performance in a 72 m Fabry Perot cavity. Review of Scientific Instruments, 2009, 80, 114501.	1.3	9
164	Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments. Physical Review Letters, 2009, 102, 243902.	7.8	41
165	Results from a novel direct magnetic gradiometer. Exploration Geophysics, 2009, 40, 222-226.	1.1	8
166	Direct string magnetic gradiometer for space applications. Sensors and Actuators A: Physical, 2008, 147, 529-535.	4.1	8
167	Feedback control of thermal lensing in a high optical power cavity. Review of Scientific Instruments, 2008, 79, 104501.	1.3	7
168	Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors. Physical Review A, 2008, 77, .	2.5	20
169	Three-mode optoacoustic parametric interactions with a coupled cavity. Physical Review A, 2008, 78, .	2.5	10
170	Observation of three-mode parametric interactions in long optical cavities. Physical Review A, 2008, 78, .	2.5	33
171	Vacuum system requirement for a 5 km baseline of gravitational-wave detector. Journal of Physics: Conference Series, 2008, 114, 012025.	0.4	0
172	The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO. Journal of Physics: Conference Series, 2008, 122, 012001.	0.4	21
173	Investigation of vacuum system requirements for a 5km baseline gravitational-wave detector. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 763-768.	2.1	5
174	Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1731.	1.5	15
175	Thermal tuning of optical cavities for parametric instability control. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1336.	2.1	23
176	Description of and Results From a Novel Direct Magnetic Gradiometer. ASEG Extended Abstracts, 2007, 2007, 1-3.	0.1	2
177	Rayleigh scattering, absorption, and birefringence of large-size bulk single-crystal sapphire. Applied Optics, 2006, 45, 2631.	2.1	9
178	Superiority of sapphire over silicon test masses regarding thermal noise and thermal lensing for laser interferometers with transmissive optics. Journal of Physics: Conference Series, 2006, 32, 404-412.	0.4	2
179	Preliminary investigation on a passive method for parametric instability control in advanced gravitational wave detectors. Journal of Physics: Conference Series, 2006, 32, 251-258.	0.4	5
180	Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors. Journal of Physics: Conference Series, 2006, 32, 282-287.	0.4	3

#	Article	IF	CITATIONS
181	Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers. Journal of Physics: Conference Series, 2006, 32, 457-463.	0.4	2
182	Suspensions with reduced violin string modes. Journal of Physics: Conference Series, 2006, 32, 353-361.	0.4	1
183	Gingin High Optical Power Test Facility. Journal of Physics: Conference Series, 2006, 32, 368-373.	0.4	24
184	Identifying deterministic signals in simulated gravitational wave data: algorithmic complexity and the surrogate data method. Classical and Quantum Gravity, 2006, 23, 1801-1814.	4.0	2
185	Status of the Australian Consortium for Interferometric Gravitational Astronomy. Classical and Quantum Gravity, 2006, 23, S41-S49.	4.0	14
186	Compensation of Strong Thermal Lensing in High-Optical-Power Cavities. Physical Review Letters, 2006, 96, 231101.	7.8	40
187	Shadowed by a sociologist. Physics World, 2005, 18, 41-42.	0.0	0
188	High mechanical quality factor of calcium fluoride (CaF2) at room temperature. EPJ Applied Physics, 2005, 30, 189-192.	0.7	2
189	Astigmatism compensation in mode-cleaner cavities for the next generation of gravitational wave interferometric detectors. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 1-6.	2.1	6
190	The gravitational wave 'probability event horizon' for double neutron star mergers. Monthly Notices of the Royal Astronomical Society, 2005, 364, 807-812.	4.4	7
191	Thermal lensing compensation principle for the ACIGA's High Optical Power Test Facility Test 1. General Relativity and Gravitation, 2005, 37, 1581-1589.	2.0	7
192	Optical design of a high power mode-cleaner for AIGO. General Relativity and Gravitation, 2005, 37, 1609-1619.	2.0	11
193	Demonstration of low power radiation pressure actuation for control of test masses. Review of Scientific Instruments, 2005, 76, 036107.	1.3	4
194	High Q factor bonding using natural resin for reduced thermal noise of test masses. Review of Scientific Instruments, 2005, 76, 026117.	1.3	7
195	Technology developments for ACIGA high power test facility for advanced interferometry. Classical and Quantum Gravity, 2005, 22, S199-S208.	4.0	6
196	Automatic Rayleigh scattering mapping system for optical quality evaluation of test masses for gravity wave detectors. Review of Scientific Instruments, 2005, 76, 015104.	1.3	3
197	Parametric Instabilities and Their Control in Advanced Interferometer Gravitational-Wave Detectors. Physical Review Letters, 2005, 94, 121102.	7.8	91
198	Telemetry system driven by radiation power for use in gravitational wave detectors. Review of Scientific Instruments, 2005, 76, 084503.	1.3	1

#	Article	IF	CITATIONS
199	ACIGA's high optical power test facility. Classical and Quantum Gravity, 2004, 21, S887-S893.	4.0	19
200	An experiment to investigate optical spring parametric instability. Classical and Quantum Gravity, 2004, 21, S1253-S1258.	4.0	12
201	Radiation pressure actuation of test masses. Classical and Quantum Gravity, 2004, 21, S875-S880.	4.0	5
202	Testing of a multi-stage low-frequency isolator using Euler spring and self-damped pendulums. Classical and Quantum Gravity, 2004, 21, S965-S971.	4.0	13
203	Thermal lensing compensation for AIGO high optical power test facility. Classical and Quantum Gravity, 2004, 21, S903-S908.	4.0	19
204	Application of new pre-isolation techniques to mode cleaner design. Classical and Quantum Gravity, 2004, 21, S951-S958.	4.0	6
205	Implementation of electrostatic actuators for suspended test mass control. Classical and Quantum Gravity, 2004, 21, S977-S983.	4.0	4
206	Control of pre-isolators for gravitational wave detection. Classical and Quantum Gravity, 2004, 21, S1015-S1022.	4.0	5
207	Non-contacting actuation by radiation powered telemetry system. Classical and Quantum Gravity, 2004, 21, S1023-S1029.	4.0	2
208	Influence of grooves and defects on the sapphire test mass Q -factor. Classical and Quantum Gravity, 2004, 21, S1121-S1126.	4.0	7
209	Large-scale inhomogeneity in sapphire test masses revealed by Rayleigh scattering imaging. Classical and Quantum Gravity, 2004, 21, S1139-S1144.	4.0	8
210	Techniques for reducing the resonant frequency of Euler spring vibration isolators. Classical and Quantum Gravity, 2004, 21, S959-S963.	4.0	13
211	The study of growth defects in sapphire by laser Rayleigh scattering imaging. Journal of Optics, 2004, 6, 635-639.	1.5	4
212	Status of ACIGA High Power Test Facility for advanced interferometry. , 2004, , .		1
213	String magnetic gradiometer system: recent airborne trials. , 2004, , .		9
214	Passive vibration isolation using a Roberts linkage. Review of Scientific Instruments, 2003, 74, 3487-3491.	1.3	31
215	Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D, 2003, 68, .	4.7	90
216	Australia's Role in Gravitational Wave Detection. Publications of the Astronomical Society of Australia, 2003, 20, 223-241.	3.4	2

#	Article	IF	CITATIONS
217	ACIGA: status report. , 2003, , .		0
218	A Search for Optical Beacons: Implications of Null Results. Astrobiology, 2002, 2, 305-312.	3.0	2
219	Statistical characteristics of a stochastic background of gravitational waves from neutron star formation. Classical and Quantum Gravity, 2002, 19, 1303-1307.	4.0	5
220	Search for gravitational wave bursts by the network of resonant detectors. Classical and Quantum Gravity, 2002, 19, 1367-1375.	4.0	9
221	Tilt sensor and servo control system for gravitational wave detection. Classical and Quantum Gravity, 2002, 19, 1723-1729.	4.0	21
222	Improved technique for measuring high pendulumQ-factors. Measurement Science and Technology, 2002, 13, 218-221.	2.6	2
223	Niobium flexure suspension design for high Q sapphire test masses for future gravitational wave detectors. Measurement Science and Technology, 2002, 13, 1173-1177.	2.6	6
224	Low loss niobium flexure suspension systems. Classical and Quantum Gravity, 2002, 19, 1703-1708.	4.0	10
225	Using Euler buckling springs for vibration isolation. Classical and Quantum Gravity, 2002, 19, 1639-1645.	4.0	44
226	Improved sensitivity of NIOBÉ in 2001 and the search for anomalous cosmic ray events. Classical and Quantum Gravity, 2002, 19, 1871-1875.	4.0	6
227	A proposal for improving the noise floor of the gravitational wave antenna Niobè. Classical and Quantum Gravity, 2002, 19, 1967-1972.	4.0	6
228	Cross-correlation studies with seismic noise. Classical and Quantum Gravity, 2002, 19, 1709-1716.	4.0	7
229	Simulating a stochastic background of gravitational waves from neutron star formation at cosmological distances. Monthly Notices of the Royal Astronomical Society, 2002, 329, 411-416.	4.4	29
230	The stochastic background of gravitational waves from neutron star formation at cosmological distances. Monthly Notices of the Royal Astronomical Society, 2001, 324, 1015-1022.	4.4	31
231	Present status of resonant-mass detectors. Classical and Quantum Gravity, 2001, 18, 4087-4100.	4.0	2
232	TheQ-factor of flexure membranes. Measurement Science and Technology, 2001, 12, 1666-1671.	2.6	3
233	Second-generation laser interferometry for gravitational wave detection: ACIGA progress. Classical and Quantum Gravity, 2001, 18, 4121-4126.	4.0	6
234	Long-term length stability and search for excess noise in multi-stage cantilever spring vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266, 219-227.	2.1	4

#	Article	IF	CITATIONS
235	Parametric Transducers for the Advanced Cryogenic Resonant-Mass Gravitational Wave Detectors. General Relativity and Gravitation, 2000, 32, 1799-1821.	2.0	21
236	Background Noise Reduction in Gravitational Wave Detectors Through Use of an Amplitude Ratio Filter. General Relativity and Gravitation, 2000, 32, 1281-1300.	2.0	3
237	The First Stage of the Laser Interferometer Gravitational Wave Observatory in Australia. General Relativity and Gravitation, 2000, 32, 371-383.	2.0	4
238	Niobe: Improved noise temperature and back ground noise suppression. AIP Conference Proceedings, 2000, , .	0.4	2
239	INITIAL OPERATION OF THE INTERNATIONAL GRAVITATIONAL EVENT COLLABORATION. International Journal of Modern Physics D, 2000, 09, 237-245.	2.1	18
240	Detection of gravitational waves. Reports on Progress in Physics, 2000, 63, 1317-1427.	20.1	77
241	First Search for Gravitational Wave Bursts with a Network of Detectors. Physical Review Letters, 2000, 85, 5046-5050.	7.8	95
242	Accurate calibration technique for a resonant-mass gravitational wave detector. Review of Scientific Instruments, 2000, 71, 4282.	1.3	6
243	The influence of X-ray damage on high purity sapphire optical absorption and investigation on the origin of the residual absorption @1064 nm. AIP Conference Proceedings, 2000, , .	0.4	2
244	X-ray induced absorption of high-purity sapphire and investigation of the origin of the residual absorption at 1064 nm. Journal Physics D: Applied Physics, 2000, 33, 589-594.	2.8	23
245	Reducing low-frequency residual motion in vibration isolation to the nanometre level. AIP Conference Proceedings, 2000, , .	0.4	5
246	Whispering Gallery mode microwave characterization of Ba(Mg1/3,Ta2/3)O3dielectric resonators. Journal Physics D: Applied Physics, 1999, 32, 2821-2826.	2.8	15
247	Filtering and calibration of data from a resonant-mass gravitational wave antenna. Classical and Quantum Gravity, 1999, 16, 3439-3456.	4.0	4
248	Why are supernovae in our Galaxy so frequent?. Monthly Notices of the Royal Astronomical Society, 1999, 302, 693-699.	4.4	59
249	A data analysis approach for detecting gravitational waves from PSR 0437–4715. Monthly Notices of the Royal Astronomical Society, 1998, 301, 469-477.	4.4	4
250	Light curves of SN 1998A and comparison with similar unusual SNe. Monthly Notices of the Royal Astronomical Society, 1998, 301, L5-L9.	4.4	9
251	Design and verification of low acoustic loss suspension systems for measuring the Q-factor of a gravitational wave detector test mass. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 246, 37-42.	2.1	19
252	Near-shore ocean wave measurement using a very low frequency folded pendulum. Measurement Science and Technology, 1998, 9, 1772-1776.	2.6	29

#	Article	IF	CITATIONS
253	Parametric interaction of the electric and acoustic fields in a sapphire monocrystal transducer with a microwave readout. Journal of Applied Physics, 1998, 84, 6523-6527.	2.5	13
254	Sensitivity and optimization of a high-Q sapphire dielectric motion-sensing transducer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 1303-1313.	3.0	13
255	Magnetic field tuning of paramagnetic frequency - temperature compensation in cryogenic sapphire dielectric microwave resonators. Journal Physics D: Applied Physics, 1997, 30, 3146-3152.	2.8	8
256	Measurements of Radiation Pressure Effect in Cryogenic Sapphire Dielectric Resonators. Physical Review Letters, 1997, 79, 2141-2144.	7.8	33
257	Development of low-loss sapphire mirrors. Applied Optics, 1997, 36, 337.	2.1	12
258	Temperature-compensated cryogenic Fabry–Perot cavity. Applied Optics, 1997, 36, 8563.	2.1	3
259	Sapphire test-masses for measuring the standard quantum limit and achieving quantum non-demolition. Applied Physics B: Lasers and Optics, 1997, 64, 153-166.	2.2	24
260	Optical absorption measurements in monocrystalline sapphire at 1 μm. Optical Materials, 1997, 8, 233-236.	3.6	24
261	Vibration isolation performance of an ultra-low frequency folded pendulum resonator. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 228, 243-249.	2.1	105
262	Future prospects for the university of Western Australia's cryogenic resonant-mass gravitational wave detector. European Physical Journal D, 1996, 46, 2909-2910.	0.4	2
263	Parametric backâ€action effects in a highâ€Q cyrogenic sapphire transducer. Review of Scientific Instruments, 1996, 67, 2435-2442.	1.3	32
264	High-resolution measurement of the temperature-dependence of the Q, coupling and resonant frequency of a microwave resonator. Measurement Science and Technology, 1996, 7, 949-953.	2.6	29
265	A microwave temperature control system dedicated to a cryogenic sapphire-spaced Fabry - Pérot optical frequency reference. Journal Physics D: Applied Physics, 1996, 29, 1661-1665.	2.8	1
266	Paramagnetic susceptibility and permittivity measurements at microwave frequencies in cryogenic sapphire resonators. Journal Physics D: Applied Physics, 1996, 29, 2082-2090.	2.8	41
267	Subparsec-scale structure and evolution of Centaurus A (NGC5128) Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 11368-11370.	7.1	9
268	Normal mode suppression in all metal cantilever vibration isolators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 197, 275-281.	2.1	0
269	Application of commercial antennas to very long baseline interferometry radio astronomy. Review of Scientific Instruments, 1995, 66, 995-999.	1.3	2
270	Southern Hemisphere automated supernova search. Review of Scientific Instruments, 1995, 66, 2777-2784.	1.3	2

#	Article	IF	CITATIONS
271	Transfer function of an ultralow frequency vibration isolation system. Review of Scientific Instruments, 1995, 66, 3216-3218.	1.3	22
272	Position control system for suspended masses in laser interferometer gravitational wave detectors. Review of Scientific Instruments, 1995, 66, 2763-2776.	1.3	15
273	Design of suspension systems for measurement of high-Q pendulums. Measurement Science and Technology, 1995, 6, 269-275.	2.6	2
274	Temperature compensation for cryogenic cavity stabilized lasers. Journal Physics D: Applied Physics, 1995, 28, 1807-1810.	2.8	16
275	Cantilever coupled impedance matching read-out for resonant bar gravitational wave antennae. Measurement Science and Technology, 1995, 6, 1437-1441.	2.6	0
276	Cryogenic, allâ€sapphire, Fabry–Perot optical frequency reference. Review of Scientific Instruments, 1995, 66, 955-960.	1.3	21
277	High Sensitivity Gravitational Wave Antenna with Parametric Transducer Readout. Physical Review Letters, 1995, 74, 1908-1911.	7.8	163
278	The Southern Hemisphere VLBI Experiment Program, SHEVE. Symposium - International Astronomical Union, 1994, 158, 131-134.	0.1	0
279	Compound pendulum test mass systems for laser interferometer gravitational wave detectors. Measurement Science and Technology, 1994, 5, 1053-1060.	2.6	4
280	Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors. Review of Scientific Instruments, 1994, 65, 3482-3488.	1.3	32
281	Supernova 1993k — first photometric results. Experimental Astronomy, 1994, 5, 151-152.	3.7	0
282	Performance of an ultra low-frequency folded pendulum. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 223-226.	2.1	52
283	An ultrahigh sensitivity sapphire transducer for vibration measurements. Journal Physics D: Applied Physics, 1994, 27, 1150-1155.	2.8	14
284	Losses in pendular suspensions due to centrifugal coupling. Pramana - Journal of Physics, 1994, 42, 261-270.	1.8	1
285	The Southern Hemisphere VLBI Experiment program, SHEVE. , 1994, , 131-134.		8
286	Music of the stars. Nature, 1993, 362, 390-390.	27.8	1
287	Gravitational lensing and lens interferometry from dark matter in the galactic halo. Astronomical and Astrophysical Transactions, 1993, 3, 191-196.	0.2	7
288	Parametric transducers for resonant bar gravitational wave antennae. Journal Physics D: Applied Physics, 1993, 26, 2276-2291.	2.8	28

#	Article	IF	CITATIONS
289	Vibration isolation for gravitational wave detection. Classical and Quantum Gravity, 1993, 10, 2407-2418.	4.0	18
290	Tests on a low-frequency inverted pendulum system. Measurement Science and Technology, 1993, 4, 995-999.	2.6	31
291	Optimization of superconducting re-entrant cavities for transducer applications. Journal Physics D: Applied Physics, 1993, 26, 804-809.	2.8	5
292	Ultrahigh Q pendulum suspensions for gravitational wave detectors. Review of Scientific Instruments, 1993, 64, 1899-1904.	1.3	30
293	Microwave signal processing for a cryogenic gravitational radiation antenna with a noncontacting readout. Review of Scientific Instruments, 1993, 64, 3191-3197.	1.3	10
294	Noncontacting microwave coupling to a cryogenic gravitational radiation antenna. Review of Scientific Instruments, 1993, 64, 1905-1909.	1.3	12
295	Ultra-stable cryogenic sapphire dielectric microwave resonators: mode frequency-temperature compensation by residual paramagnetic impurities. Journal Physics D: Applied Physics, 1992, 25, 1105-1109.	2.8	44
296	High dynamic range measurements of an all metal isolator using a sapphire transducer (for) Tj ETQq0 0 0 rgBT /O	verlock 10) Tf 50 462 T
297	Sapphire dielectric resonator transducers. Journal Physics D: Applied Physics, 1992, 25, 1110-1115.	2.8	25
298	A sapphire oscillator for VLBI radio astronomy. Measurement Science and Technology, 1992, 3, 718-722.	2.6	13

299	A narrow-band search for extraterrestrial intelligence (SETI) using the interstellar contact channel hypothesis. Monthly Notices of the Royal Astronomical Society, 1992, 257, 105-109.	4.4	16
300	Superconducting reâ€entrant cavity transducer for a resonant bar gravitational radiation antenna. Review of Scientific Instruments, 1992, 63, 4154-4160.	1.3	18
301	Gravitational waves. Endeavour, 1992, 16, 37-42.	0.4	1
302	Parametric transducers. , 1991, , 186-225.		3
303	Sapphire Clocks in VLBI Radioastronomy. Publications of the Astronomical Society of Australia, 1991, 9, 171-171.	3.4	0
304	Status of the Perth Observatory Automated Supernova Search Program. Publications of the Astronomical Society of Australia, 1991, 9, 84-85.	3.4	1
305	An unusually strong Einstein ring in the radio source PKS1830–211. Nature, 1991, 352, 132-134.	27.8	109
306	Behaviour of a vibration isolator suitable for use in cryogenic or vacuum environments.	26	10

18

#	Article	IF	CITATIONS
307	Interaction of a parametric transducer with a resonant bar gravitational radiation detector. Journal Physics D: Applied Physics, 1990, 23, 1-6.	2.8	19
308	Technology, aggression and the search for extraterrestrial intelligence. Medicine and War, 1989, 5, 29-45.	0.2	1
309	A Search for and Optical Pulsar in SN 1987A using Real-Time FFT Techniques. Publications of the Astronomical Society of Australia, 1989, 8, 169-171.	3.4	0
310	A High Stability Oscillator Based on a Sapphire Loaded Superconducting Cavity Resonator. , 1989, , 420-424.		0
311	Antenna pattern for four gravitational wave antennas. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1988, 11, 185-191.	0.2	2
312	Impedance matching element for a gravitational radiation detector. Journal Physics D: Applied Physics, 1987, 20, 162-168.	2.8	8
313	A high-Q sapphire loaded superconducting cavity resonator. Journal Physics D: Applied Physics, 1987, 20, 1559-1566.	2.8	18
314	Development of a 1.5â€ŧonne niobium gravitational radiational antenna. Review of Scientific Instruments, 1987, 58, 1910-1916.	1.3	19
315	Resonant-bar gravitational radiation antennas. Contemporary Physics, 1987, 28, 457-475.	1.8	1
316	Gravitationswellenâ€Antennen. Physik in Unserer Zeit, 1986, 17, 142-150.	0.0	0
317	Astronomy: Detecting gravitational waves. Nature, 1986, 323, 761-761.	27.8	0
318	The evolution of radio pulsars. Astrophysical Journal, 1986, 307, 535.	4.5	19
319	Quality factor of polycrystalline Nb between 0.4 and 10 K. Journal of Low Temperature Physics, 1985, 58, 37-45.	1.4	11
320	Ultra-low phase noise superconducting-cavity stabilised microwave oscillator with application to gravitational radiation detection. Journal Physics D: Applied Physics, 1983, 16, 105-113.	2.8	13
321	Cryogenic X-band ferrite phase shifter/attenuator. Journal of Physics E: Scientific Instruments, 1983, 16, 119-121.	0.7	2
322	The evolution of radio pulsars. Monthly Notices of the Royal Astronomical Society, 1983, 205, 281-284.	4.4	11
323	Thermoelastic Effect in Niobium at the Superconducting Transition. Physical Review Letters, 1982, 49, 375-378.	7.8	18
324	High-Q microwave properties of a sapphire ring resonator. Journal Physics D: Applied Physics, 1982, 15, 1651-1656.	2.8	22

#	Article	IF	CITATIONS
325	A prototype back-action evading transducer suitable for gravitational radiation antennae. Physics Letters, Section A: General, Atomic and Solid State Physics, 1982, 91, 197-200.	2.1	13
326	Low-noise temperature gravitational-radiation antenna-transducer system. Il Nuovo Cimento B, 1981, 61, 73-80.	0.1	11
327	The effect of the superconducting transition on the acoustic losses in audiofrequency niobium resonators. Journal of Low Temperature Physics, 1980, 41, 267-274.	1.4	10
328	Fabrication and properties of rf niobiumâ€onâ€sapphire superconducting resonators. Review of Scientific Instruments, 1979, 50, 279-285.	1.3	3
329	Superconducting accelerometer using niobiumâ€onâ€sapphire rf resonator. Review of Scientific Instruments, 1979, 50, 286-291.	1.3	4
330	The LSU Low Temperature Gravity Wave Experiment. , 1977, , 149-159.		0
331	Stability of the helium film to a chemical potential perturbation. Journal of Low Temperature Physics, 1975, 20, 585-591.	1.4	1
332	How to make high critical current joints in Ni–Ti wire. Review of Scientific Instruments, 1975, 46, 1130-1131.	1.3	11
333	Automated flux pump for energizing high current superconducting loads. Review of Scientific Instruments, 1975, 46, 582-585.	1.3	7
334	Extrusion of indium wire for vacuum seals. Review of Scientific Instruments, 1975, 46, 225-226.	1.3	8
335	The Use of Cryogenic Techniques to Achieve High Sensitivity in Gravitational Wave Detectors. Symposium - International Astronomical Union, 1974, 64, 40-51.	0.1	2
336	Comments on recent momentum-accommodation-coefficient measurements for helium films. Physical Review A, 1974, 10, 726-728.	2.5	5
337	Black holes of small mass. Nature, 1974, 251, 204-205.	27.8	1
338	Gravitational waves. , 0, , 3-15.		0
339	Sources of gravitational waves. , 0, , 16-41.		0
340	Gravitational wave detectors. , 0, , 42-70.		0
341	Vibration isolation. , 0, , 202-226.		0
342	Stabilising interferometers against high optical power effects. , 0, , 244-258.		0